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1 Abstract
The ubiquitous use of Android smartphones continue to threaten the security and privacy of users’ personal
information. Its fast adoption rate makes the smartphone an interesting target for malware authors to deploy
new attacks and infect millions of devices. Moreover, the growing number and diversity of malicious ap-
plications render conventional defenses ineffective. Thus, there is a need to not only better understand the
characteristics of malware families but also, to generate features that are robust and efficient for classification
over an extended period of time.

In this chapter, we propose a machine learning based malware detection and classification methodology,
with the use of static analysis as feature extraction method. Our tool, uniPDroid can be used to extract a
plethora of informative features from our extensive dataset. We performed a malware family classification
and obtained an average classification accuracy of 92%. We also present the empirical results for our cumu-
lative classification which investigates how well features from old malware can contribute to the detection
of new variants of both known and unknown malware.

2 Introduction
Since its first release in late 20081, Android smartphones have continuously been replacing the traditional
mobile phones. The advent of such high-powered and affordable smart devices has redefined the way mobile
phone users carry out their day-to-day activities. From checking emails to doing online banking, mundane
tasks once conducted on a desktop only are now being executed “on the go”. According to Gartner2, world-
wide sale of Android smartphones in 2015 has reached more than 271 million devices, which accounted for
82.2% of the market share. Due to its popularity, the number of malware targeting the Android platform
has increased significantly in recent years. As such, malicious applications pose a significant threat to the
smartphone platform security. In the first half of 2014, F-Secure3 reported that 295 new threat families or
new variants of known families were collected. It is also worth mentioning that 294 out of these 295 families

1http://www.cnet.com/news/a-brief-history-of-android-phones/
2http://www.gartner.com/newsroom/id/3115517
3https://www.f-secure.com/documents/996508/1030743/Threat Report H1 2014.pdf
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run on Android platform. Additionally, in the first quarter of 2015, Kaspersky’s mobile security products
detected 103, 072 new malicious applications, a three-fold increase from last quarter of 2014 [15].

On one hand, these statistics further prove that Android continues to be a favorite target for majority of
the mobile threats, as smartphones continue to replace traditional phones. On the other hand, the security of
Android platform still requires thorough understanding, as demonstrated by the plethora of attacks in [11,
13, 14, 26]. Thus, effective ways of enforcing security on such devices are still subject to investigation and
there exists further room for improvement. To address the aforementioned security issue, we can leverage
various techniques to analyze and detect Android malicious applications.

The techniques used to detect Android malware are similar to the ones used on other platforms. De-
tection techniques are essentially broken into: (i) static analysis by analyzing a compiled file, (ii) dynamic
analysis by analyzing the runtime behavior, and (iii) hybrid analysis by combining static and dynamic tech-
niques [19]. Static analysis refers to extraction and analysis of information about an application from binary,
source code or other associated files. Static analysis can be performed before executing the application for
the first time. However, this method is rendered ineffective by obfuscation techniques as it is not able to deal
with malware sample that changes its code without changing functionality, such as polymorphic malware.

On the other hand, dynamic analysis relies on execution of code in a virtual environment or sandbox
to monitor the interaction of applications with the operating system. This approach comes with several
drawbacks: (i) it is not clear how long the monitoring period should be in order to detect key important
events, (ii) it is not always evident which conditions trigger the malicious behavior and (iii) dynamic analysis
might be more resource-consuming and computationally expensive than static analysis.

In the early days, malware detection and classification mechanisms employed only either static or dy-
namic analysis for feature extraction and malware prediction. However, as malicious programs continued
to evolve in complexity and to deploy sophisticated attacks, there was a need for more robust frameworks.
Thus, applying a hybrid method, which is a combination of static and dynamic analysis as shown in [25],
when building the feature vector space is considered as one way of dealing with this problem. It should be
noted that selecting a hybrid method when dealing with smartphone malware is not a popular method as
this technique requires high computational resources and could impact negatively on the desired seamless
interaction between the user and the device.

In a nutshell, static analysis is beneficial on memory-limited Android-powered devices because the mal-
ware is not executed and only analyzed. Additionally, static analysis makes use of reverse engineering
tools to extract information from an application. For these reasons, we will concentrate on the lightweight
approach and thus, advocate for static analysis through the use of machine learning.

Machine Learning (ML) techniques to detect mobile malware have been extensively investigated, lever-
aging a few characteristics of the mobile applications (for example, call graphs [16], permissions [6], or both
API calls and permissions [2, 22]), and the results obtained were promising. Classification approaches have
also been proposed to model and approximate the behaviors of Android applications and discern malicious
apps from benign ones. The detection accuracy of a classification method depends on the quality of the
features (for example, how specific the features are [10]). Grace et al. [18] proposed a classification method
with pure static features (data and control-flow analysis) that gives a False Negative (FN) rate of 9%. Zhou
et al. [39] extracted hybrid features, that is a combination of static and dynamic features, obtaining a better
FN rate of 4.2%.

Although it is critical to distinguish malicious applications from clean ones, it is also important to effi-
ciently classify malware into their correct families. Malware authors often redistribute repackaged version
of existing malware and therefore, by correctly classifying the original malware, it becomes easier for anti-
virus engines to detect repackaged versions. Moreover, the features used to classify malware should also be
robust and relevant over a long period of time as out-of-date features would allow malware samples to evade
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detection and classification mechanisms. To address the aforementioned issues, we focus solely on mali-
cious applications to firstly investigate how to efficiently and accurately classify malware samples into their
correct families, and secondly generate robust feature sets that will stand the test of time and still be relevant
over a period of years; this is tested through the experimental work referred to as cumulative classification.

In this chapter, we propose a malware classification method to: (i) leverage an extensive coverage of
applications’ behavioral characteristics than the state-of-the-art; (ii) integrate decision-making through mul-
tiple classifiers; and (iii) utilize the robustness of extracted features to detect and classify newly-discovered
malware. Specifically, we utilize a large number of features, extracted statically, from our extensive dataset
comprising of 15, 884 samples. We extract Intents, actual permissions used by an application, critical API
calls, Linux system commands, and some other features that could possibly indicate the presence of ma-
licious behaviors in an application. In order to build our classifier, we utilize the eXtreme Gradient boost
(XGboost4) classifier, which is an ensemble method where weaker learners are combined to make a stronger
learner. XGboost contains a modified version of the Gradient Boosting algorithm and can automatically do
parallel computation with OpenMP, and it is much faster than the existing Gradient Boosting algorithm. Our
aim is to maximize the accuracy scores of our classifier in terms of F1-score, Recall and Precision.

In particular, our main contributions can be summarized as follows:

• We presented an Android malware detection and classification method that uses several informative
features with good discriminative power to categorize malicious apps under their respective family
names. We designed and built a tool named uniPDroid, written in Python programming language
to extract the features such as Intents, permissions used by an app, critical API calls, Linux system
commands, and some other features that might indicate capability of performing malicious activities
by an app.

• We performed an extensive static analysis on large-scale well-labelled dataset of 15, 884 Android
applications. The dataset includes malware developed within a seven-year period, from year 2009 to
2015 and collected from different well-known and reliable repositories.

• We used several ML classification algorithms to discover the most highly performing one in terms of
accuracy and speed. We leveraged boosting techniques to obtain as much detection and classification
performance as possible for Android malware detection in the wild. Our experimental evaluations
show that our proposed detection method is very effective and efficient. It obtained a true positive rate
in detecting malware applications as high as 92%.

This chapter is organized as follows: in Section 3, we present the related work in the area of malware
detection and classification. Section 4 provides an extensive description of the proposed classification frame-
work, including the dataset collection and pre-processing, feature extraction and selection, and evaluation
metrics used. In the next section, we then present the experimental work for malware family-based clas-
sification followed by the work on cumulative classification in Section 6. In Section 7, we provide our
conclusions.

4https://github.com/dmlc/xgboost
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3 Literature Review

Figure 1: General classification methodology

Machine Learning (ML) techniques have been extensively used for detection of malware on mobile de-
vices [6, 24, 36]. Figure 1 presents an overview of the general framework of a standard ML technique -
classification. In the remainder of this section, we present some of the existing work in the area of Android
malware classification.

The authors in [28] applied clustering techniques in malware detection of Android applications. They
extracted the features of the applications from the application’s XML file, which contains permissions re-
quested by apps then applied unsupervised ML techniques to detect malware applications automatically.
Similarly, Arp et al. [5] presented Drebin, an on-device malware detection tool utilizing ML-based methods
on features such as requested hardware components, permissions, names of application components, intents,
and API calls. Gascon et al. [16] presented a method that disassembles applications and extracted their
function call graphs using the Androguard framework. They also proposed learning-based method for the
detection of malicious Android applications. Their method employed an explicit feature map inspired by the
neighborhood hash graph kernel to represent applications based on their function call graphs.

Allix et al. [3] have used several ML classifiers to build a set of features in the form of Control Flow
Graphs (CFG) of applications to classify benign from malicious applications. The authors focused exclu-
sively on the history aspect of datasets used in their experiment rather than malware detection performance.
Karim et al. [10] proposed a classification approach to detect malware by extracting a data dependence graph
representing inter-procedural flows of data. The authors extracted a data-flow feature on how user inputs can
trigger sensitive API invocations.

The authors of [9] suggested a solution to detect Android malware collusions by constructing Inter-
Component Communication (ICC). The authors constructed ICC maps to capture pairwise communicating
ICC channels of 2, 644 Android applications. Britton et al. [35] extracted the frequencies of all possible
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n-byte sequences in the Android application’s bytecode as features and trained several classification algo-
rithms to classify benign applications from malicious ones. The authors used a dataset comprising of 3, 869
Android applications. Sahs et al. [27] presented an ML-based framework for Android malware detection us-
ing Support Vector Machines (SVM) algorithms. The authors exploited a single-class SVM model derived
from benign samples. They used the Android permissions in the Manifest files and CFGs of applications
from the dataset. Crowdroid [7] collects behavioral-related data directly from users via crowd-sourcing and
evaluates the data with a clustering algorithm.

Shabtai et al. [33] proposed a new method for categorizing Android applications through ML techniques.
To represent each application, their method extracts different feature sets including the frequency of occur-
rence of the printable strings, the different permissions of the application itself, and the permissions of the
application extracted from the Android Market. Abela et al. [1] presented AMDA, an automated malware
detection system for the Android platform. The authors extracted features such as system calls form benign
and malware applications to provide baseline behavior datasets to feed machine learners. Test applications
are then passed through the behavior-based module for identification of presence of malicious payloads.
Similarly, RobotDroid [37] is a framework that detects smartphone malware based on SVM active learning
algorithm. The authors in [30] designed an anomaly detection system that extracts the strings contained in
application files in order to detect malware. Their proposed method is based on features that were extracted
from string analysis of the application.

Martinelli et al. [12] proposed CAMAS, a framework for the analysis and classification of malicious An-
droid applications, through pattern recognition on execution graphs. They extracted a subset of frequent
subgraphs of system calls that are executed by most of the malware. The resulting vector of the subgraphs
is given to a classifier that returns its decision in terms of whether or not a malware has been detected.
DroidAnalytics [38] is a malware analytic system for malware collection, signature generation and as-
sociation based on similarity scores by analyzing the low-level system at the application, class or method
level.

The authors in [31] proposed another detection method for Android malware. In particular, they used
only manifest files to detect malware. The proposed method extracts six types of information from manifest
files such as Permission, Intent (action, priority and category), Process name and Number of redefined
permission and then uses them to detect Android malware. DroidMat presented by Wu et al. [36], exploits
permissions, intents, inter-component communication, and API calls to distinguish malicious apps from
benign ones. The detection performance was evaluated on a dataset of 1, 500 benign and 238 malicious
applications and compared with the Androguard risk ranking tool, with respect to detection metrics such as
accuracy rate.

The work in [23] presented a machine learning approach including SVM, Decision Trees (DT), and
Bagging predictor to detect malicious Android applications. They trained and tested a classifier by using
extracted permissions and API calls as features to identify whether an application is potentially malicious
or not. Koundel et al. [20] designed a Naive Bayes classifier to classify applications using various attributes
of an application, such as the permissions used by an application, battery usage and rating acquired by the
application on Android market. MAMA [29] presents Manifest analysis for malware detection in Android. It
extracts several features from the Android Manifest of the applications to build machine-learning classifiers
such as K-Nearest Neighbors, DT, SVM and Bayesian networks.

The literature presented in this section provides an overview of the existing work in the field of Android
malware versus cleanware detection and ML-based classification methodologies. In our work, we focused
solely on Android malware, proposing a novel ML-based methodology that can efficiently, and with high
accuracy, assign malware samples to their correct family names. We argue that it is not only important to
detect malicious applications, but also to label them correctly as malware authors often repackage existing
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malware. Hence, re-detecting these repackaged samples becomes easier if the correct family names are
used. Additionally, we analyzed the robustness of our extracted features used by the proposed methodology
by performing a cumulative malware classification. We verified how efficient are features extracted from old
malware samples in terms of detecting and classifying newly discovered malware.

4 Proposed Classification Framework
This section provides extensive details on how the experimental dataset was collected and pre-processed,
feature extraction and selection, and a description of the classification models and evaluation metrics used
for the empirical results. In Section 3.1, we describe the composition of our experimental dataset, followed
by an explanation of the different types of features extracted in Section 3.2. In Section 3.3, we elaborate
on the methodology used for selecting the most representative features used by our classification model -
Section 3.4. Finally, in the last subsection, we provide more details on the evaluation metrics used for our
empirical results.

4.1 Dataset Collection and Pre-processing
In this subsection, we provide further detail on the composition of our experimental dataset. In order to
conduct an extensive analysis, we collected a set of large well-labeled Android malicious applications. The
dataset used in our evaluation is composed of 15, 884 malicious applications collected from the following
existing work in the literature: [5,21,34,40]. The samples were released over a period of seven years, starting
from 2009 until 2015. Table 1 shows the details of the dataset composition.

Repository Number of samples
Genome [40] 1,260

Drebin [5] 5,560
M0Droid [21] 193
VirusTotal [34] 8,871

Total 15,884

Table 1: Dataset composition

To perform malware classification using supervised machine learning classification algorithm (for exam-
ple, XGBoost classifier), we are required to provide a well-labelled dataset. To find the class label associated
with each malware sample in our dataset, we wrote several scripts in Bash and Python programming lan-
guages. We submitted each malware sample to Virustotal [34] and made a query to get the malware family
name, as shown in listings 1 and 2. Virustotal then returned an analysis report for the given file in the form
of JSON object as depicted in Listing 3. We then parsed the JSON object and performed text processing to
extract the related family names. The names were then used as class labels since there is no agreed-upon
malware naming convention among antivirus (AV) companies.

In order to decide on the family name for each class label, we took into account the family names of
top eight AV engines5. Leveraging these top eight AVs and based on majority voting role, we extracted
the selected malware family names. The AVs that we exploited are among the top AV engines used on
the Android platform and are namely: MicroWorld-eScan, BitDefender, Kaspersky, Avira, AVG, Emsisoft,

5http://www.av-comparatives.org/wp-content/uploads/2014/03/security survey2014 en.pdf
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AVware, and F-Secure. The reason for considering only these eight AVs is because (i) they are among top
AV engines dedicated to the Android Platform; (ii) we observed that these AV outperform others in most
cases, particularly when detecting malware; and (iii) we did not further complicate the text processing phase
by increasing the number of AV engines.

1 #imports
2 import simplejson
3 import urllib
4 import urllib2
5
6 url = "https :// www.virustotal.com/vtapi/v2/file/report"
7 parameters = {"resource":APK -hasH -name ,"apikey":apikey}
8 data = urllib.urlencode(parameters)
9 req = urllib2.Request(url , data)

10 response = urllib2.urlopen(req)
11 json -object = response.read()
12 print json -object

Listing 1: Example of a Python script for submitting malware
samples to Virustotal

1 {"scans": {
2 "Kaspersky":{"detected":true ,"version":"15.10","result":"Trojan -Spy.AndroidOS.Adrd.a" ,..},
3 "BitDefender":{"detected":true ,"version":"7.2","result":"Android.Trojan.Adrd.A" ,..},
4 "Emsisoft":{"detected":true ,"version":"3.5.0.642","result":"Android.Trojan.Adrd.A" ,.. },
5 "F-Secure":{"detected":true ,"version":"11.0.19100.45","result":"Trojan:Android/Adrd.A" ,..},
6 "Avira":{"detected":true ,"version":"8.3.2.4","result":"ANDROID/Spy.Adrd.D.Gen" ,..},
7 .
8 .
9 "AVG":{"detected":true ,"version":"16.0.0.4489","result":"Android/Adr" ,..},

10 "resource": "4de0d8997949265a4b5647bb9f9d42926bd88191", "total": 54, "positives": 38,
11 "md5": "77 b0105632e309b48e66f7cdb4678e02" ,...}

Listing 2: Example of a JSON file produced by Virustotal

4.2 Feature Extraction
Android applications are written in Java, compiled to Java bytecode, and then converted into platform-
specific Dalvik bytecode. This bytecode can be efficiently disassembled and provides us with useful infor-
mation about features used in an application. We mainly extracted the features from bytecode and converted
these features into binary feature vectors, which are made up of 560 features. Each feature vector is com-
prised of the features described below:

• Intents: the intent is an abstract description of an operation to be performed and allowing information
about events to be shared among different components and applications. We extract all intents in
Android app as a feature set because malware often listen to specific intents. Listing 3 shows the
snippet used to extract intents from an application.
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1 from androguard.core.bytecodes.dvm import *
2 from androguard.core.bytecodes.apk import *
3 from androguard.core.analysis.analysis import *
4
5 a = APK("app.apk")
6 d = dvm.DalvikVMFormat( a.get_dex () )
7 z = d.get_strings ()
8 for i in range(len(z)):
9 if z[i]. startswith(’android.intent.action.’):

10 intents = z[i]
11 intentList.append(intents)

Listing 3: Example of a Python script for extracting
intents from Dalvik bytecode

• Used permissions: a significant part of Android’s built-in security is its permissions system. Permis-
sions allow an application to access potentially dangerous API calls. Many applications need several
permissions to function properly and user must accept them at install-time. The used permission
provides a more in-depth view on the behavioral characteristics of an application. We extract and
include them to the feature set (e.g., INTERNET, ACCESS FINE LOCATION, INSTALL PACKAGES). Listing 4
describes the permissions extraction process.

1 ...
2 # the APK
3 a = APK("app.apk")
4 # the classes.dex
5 d = dvm.DalvikVMFormat( a.get_dex () )
6 # the analyzed classes.dex
7 dx = analysis.uVMAnalysis( d )
8
9 Permission_dexFile = dx.get_permissions( [] )

10 for i in Permission_dexFile:
11 permList.append(i)

Listing 4: Example of a Python script for extracting
permissions from Dalvik bytecode

• System Commands: malware use system commands to run root exploit code or download and install
additional executable files. Since system command can provide us with valuable information to de-
tect malicious behavior, we extract and include them in the feature set. The authors in [32] listed
the most commonly used system commands in malicious applications (for example, chmod, su,

mount, sh, killall, reboot, mkdir, ln, ps). These commands are executed after the mal-
ware gains root privilege on the device. Listing 5 shows how the system commands are extracted from
Dalvik bytecode.
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1 ...
2 a = APK("app.apk")
3 d = dvm.DalvikVMFormat( a.get_dex () )
4 z = d.get_strings ()
5 # to back trace unix commands
6 suspicious_cmds =["su","mount","reboot","mkdir"
7 ,...]
8 for i in range(len(z)):
9 for j in range(len(suspicious_cmds )):

10 if suspicious_cmds[j]==z[i]:
11 cmdList.append(suspicious_cmds[j])

Listing 5: Example of a Python script for extracting
system commands from Dalvik bytecode

• Suspicious API calls: we extracted the API calls that are frequently seen in malware samples and
can result in malicious behavior. In order to obtain a deeper understanding of the functionality
of an application, we collected these API calls and included them in the feature set (for example,
openFileOutput, sendTextMessage, getPackageManager, getDeviceId, Runtime.exec,

Cipher.getInstance). The authors in [32] mentioned the most commonly used API calls in mali-
cious applications. Listing 6 shows the snippet of code used to extract suspicious API calls.

1 a = APK("app.apk")
2 d = dvm.DalvikVMFormat( a.get_dex () )
3 z = d.get_strings ()
4 suspicious_APIs =["getSimSerialNumber",
5 "getSubscriberId","getDeviceId" ,...]
6 for i in range(len(z)):
7 for j in range(len(suspicious_APIs )):
8 if suspicious_APIs[j]==z[i]:
9 APIsList.append(suspicious_APIs[j])

Listing 6: Example of a Python script for extracting
suspicious API calls form Dalvik bytecode

• Malicious Activities: we considered different malicious behaviors seen in malware applications. We
investigate whether an Android application is capable of performing such malicious activities through
Dalvik bytecode analysis. We consider different kinds of information that malicious applications are
able to harvest from smartphones. In Listing 7, we describe how to search for features that are prone
to perform malicious activities. We briefly list some of these features below.

– Reading the IMEI
– Loading Native, Dynamic, and Reflection Code
– Accessing files on SD card
– Reading location information through GPS/WiFi
– Intercepting data network activities
– Making phone calls and disabling incoming SMS notifications
– Retrieving information of the application installed
– Recording audio and capturing video
– Opening a TCP/UDP Socket
– Performing encryption and message digest algorithms
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1 ...
2 # Searching for Doing Cipher
3 a = APK("app.apk")
4 d = dvm.DalvikVMFormat( a.get_dex () )
5 dx = analysis.uVMAnalysis( d )
6 getIN=dx.tainted_packages.search_methods
7 ("Ljavax/crypto/Cipher","getInstance",".")
8 ScrKey=dx.tainted_packages.search_methods
9 ("Ljavax/crypto/spec/SecretKeySpec","<init >",".")

10 Cipherini=dx.tainted_packages.search_methods
11 ("Ljavax/crypto/Cipher","<init >", ".")
12 CipherDO=dx.tainted_packages.search_methods
13 ("Ljavax/crypto/Cipher","doFinal", ".")
14 if ((getIN)and(Cipherini)and(CipherDO ))or(ScrKey ):
15 potential_misBhve.append(’Does Cipher ’)

Listing 7: Example of a Python script for extracting potential
misbehaviour from Dalvik bytecode

4.3 Feature Selection
We should consider that a large number of features, some of which are redundant or irrelevant, may present
several problems such as misleading the learning algorithm, over-fitting, and increasing model complexity.
Feature selection is a process which automatically selects features in dataset that contribute most to the
prediction results. The benefits of performing feature selection before modelling the data are to reduce
over-fitting, to improve accuracy, and to reduce training time. We used a technique leveraging ensemble of
randomized decision trees, that is, Extra-Trees Classifier for determining the feature importances [17]. We
exploited Extra-Trees Classifier to compute the relative importance of each attribute to help better the feature
selection process. We used a meta-transformer, SelectFromModel [17], for selecting features based on
importance weights as shown in Listing 8. This feature transformer can be used along with any estimator that
has a feature importances attribute after fitting. If the corresponding features’ importance values are
below the user-defined threshold parameter (for example, Mean), the features are considered as unimportant
and consequently, are discarded. Figure 2 shows the most important features (total of 101 binary features)
that we used to train and evaluate our classification algorithms.

1 #To build a forest
2 clf = ExtraTreesClassifier(n_estimators =600)
3 clf = clf.fit(X_train , y_train)
4 #To compute the feature importances
5 importances=clf.feature_importances_
6 # To reduce 560 features to 101
7 model = SelectFromModel(clf , prefit=True)
8 X_train_new = model.transform(X_train)

Listing 8: Example of a Python script used for
feature selection process
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Figure 2: Key features extracted from our dataset

4.4 Classification Models
XGBoost [8] is the abbreviation for eXtreme Gradient Boosting. It is a gradient boosting tree method.
Gradient refers to the use of gradient descent, which can be used as a way to find a local minimum of a
function and Boosting is a technique which consists of the fact that a set of weak learners is stronger than
a single strong learner. XGboost algorithm uses a differentiable loss function to calculate the adjustments
needed to be made to a consecutive successor learner in an iterative learning sequence. The algorithm can
automatically do parallel computations with OpenMP (an API for writing Multi-threaded Applications), and
it is much faster than existing Gradient Boosting algorithm. Listing 9 provides an excerpt of the source code
for XGBoost.
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1 import numpy as np
2 import xgboost as xgb
3 from sklearn.metrics import classification_report
4
5 def train ():
6 data_train = np.genfromtxt(open("train.csv","r"), delimiter=",")
7 y_train = data_train [:,0]
8 X_train = data_train [: ,1:]
9 xg_train = xgb.DMatrix(X_train , label=y_train)

10 data_test = np.genfromtxt(open("test.csv","r"), delimiter=",")
11 y_test = data_test [:,0]
12 X_test = data_test [:,1:]
13 xg_test = xgb.DMatrix(X_test , label=y_test)
14 # setup parameters for xgboost
15 param = {}
16 param[’objective ’] = ’multi:softmax ’
17 param[’eta’] = 0.1
18 param[’max_depth ’] = 6
19 param[’silent ’] = 1
20 param[’nthread ’] = 4
21 param[’num_class ’] = 78 # Number of classes starting from 0
22 watchlist = [ (xg_train ,’train ’), (xg_test , ’test’) ]
23 num_round = 260
24 bst = xgb.train(param , xg_train , num_round , watchlist );
25 # get prediction
26 y_pred = bst.predict( xg_test );
27 print classification_report(y_test , y_pred)
28
29 if __name__ == ’__main__ ’:
30 train()

Listing 9: Example of code for the Machine Learning classifier, eXtreme
Gradient Boosting

The different parts of the proposed classification methodology, explained in previous subsections, can be
summarized in Figure 3. We extended the Androguard tool [4] and built uniPDroid, a static analysis tool
written in Python programming language. Our proposed method uses this tool to extract several informative
features representing characteristics of the application and leverages several Python ML libraries to build the
best performing classifier, XGBoost, in order to perform classification task. In particular, the system consists
of two modules: (i) Feature Extraction Module, and (ii) Machine Learning Classification Module. The
feature extraction module includes three components. The uniPDroid.py is the main component within
this module extracting informative features from an application while Androguard and Androlyze.py

are auxiliary components providing support for performing feature extraction task. The ML classification
module leverages several ML packages to perform classification. The main component within this module is
the MalClassifier.py. The Scikit-learn and REP packages provide different classification algorithms
and some helper functions for performance evaluation.
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Figure 3: Framework of proposed classification methodology

4.5 Evaluation metrics
Table 2 introduces the metrics that we considered in order to assess the performance of the ML classification
algorithms in class imbalance problem, that is, the total number of a class of positive data is far less than
the total number of negative data. The highest precision means that an algorithm returns substantially more
relevant results than irrelevant ones, while the highest recall means an algorithm returns the most of the
relevant results. The F1-score combines precision and recall: it is the harmonic mean of precision and
recall. We elaborate further on our empirical results in Section 6.

Metric Description Formula
Precision Measure of exactness or quality TP

TP+FP

Recall Measure of completeness or quantity TP

TP+FN

F1-score Harmonic mean of precision and recall 2×Precision×Recall
Precision+Recall

Table 2: Performance metrics

5 Malware Family-based Classification
In this experiment, we carried out family by family malware classification. To this end, we grouped 15, 884
Android malware in our repository into 204 different malware families. To perform an efficient and effective
classification task and have sufficient samples to feed our proposed ML classification algorithm, we discard
malware families that include less than 10 samples and consequently, ended up with 78 malware families.
We shuffled and split the whole data points into training and testing sets, 80% and 20% respectively. We
levereged XGBoost classification algorithm to perform classification task over the 78 different malware
families. Tables 3, 4, and 5 show the malware families used in our experiments as well as the infection risks
associated with each malware family.
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Before conducting classification task, in order to achieve a high accuracy in performance, we fine-tuned
the hyper-parameters of our classification algorithm (e.g., learning rate, the number of decision trees and
their maximum depth) through Grid-Search procedure combined with 5-fold Cross-Validation over the train-
ing set. Having the best parameters selected, we trained our classifier on the training set (using 13, 000
samples) and tested its performance against 3, 000 unseen samples in classifier point of views (that is, on
the testing set). Table 6 shows the classification results (F1-score) for each malware family and Table 8
illustrates the overall accuracy measures in terms of Precision, Recall, and F1-score over the 78 malware
families.

Family
Name

Infection Risks

AdFlex An advertisement library may compromise your personal information
ADRD Steals private information
Adwo An advertisement library may compromise your personal information
Agilebinary A Spyware accessing the file system and retrieving app data
AirPush A very aggressive Ad-Network and compromises your personal information
Andup Steals personal information
AppQuanta An advertisement library may compromise your personal information
Asroot Uses Asroot root exploit

AutoSMS
Attempts to steal sensitive data by seizing incoming SMS messages and forwards them to a
remote site

BaseBridge Sends premium-rate SMS to predetermined numbers
Boxer Sends SMS to premium-rated numbers
Cobbler A monitoring tool and wipes the SD card’s contents and everything stored on the device
DDLight Collects information about the device and sends back to a remote server
Dianjin An advertisement library which may compromise your personal information
Dianle Interrupts the normal operations and gains access to private information
Dougalek Steals personal information and uploads these data to a remote server
Downloader Gains root access and downloads additional malicious apps
DroidSheep Captures and hijacks unencrypted web sessions
Dropper Interrupts the normal operations and gains access to private information
Ewalls Steals information from the mobile device
Exploid Exploits vulnerabilities to gain root privileges on devices

FakeApp
Downloads configuration files to display advertisements and collects information from the
compromised device

FakeBank Opens a back door and steals information from the compromised device
FakeDoc Installs additional applications
FakeInstall Pretends to be an installer for legitimate app, sends premium-rate SMS
FakeTimer Sends personal information to a remote server and opens pornographic websites

Table 3: Infection risks associated with each malware family
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Family
Name

Infection Risks

Feejar Sends SMS to premium-rated numbers
Geinimi Opens a back door and transmits private information
Gepew Attempts to replace installed apps with trojanized versions
GingerBreak A root exploit for Android 2.2 and 2.3
GingerMaster Utilizes a Root Exploit and provides root-level access
GoldDream Steals information from Android devices
GoneSixty Steals private information
Hamob An advertisement library may compromise your personal information
HiddenAds Does not have an icon and runs in a stealth mode and displays various advertising messages
Igexin An advertisement library may compromise your personal information
InfoStealer Secretly collects and uploads sensitive information
JSmsHider Opens a backdoor and sends information to a specific URL
Kmin Attempts to send data to a remote server
Kuguo An advertisement library may compromise your personal information
KungFu Forwards confidential information to a remote server
LeadBolt An advertisement library may compromise your personal information
Lovetrap Sends SMS to premium-rated numbers and steals information
Mecor Monitors and compromises your personal information
Metasploit Exploits vulnerabilities to gain root privileges on devices
Minimob Compromise personal information and distributes via spam email
Mobclick Aggressively pushes unwanted ads and steals personal information

MobileTX
Steals information from the compromised device and may send SMS to a premium-rate num-
ber

Mseg Steals private data and secretly send SMS to premium-rated numbers
MTK Interrupts the normal operations and gains access to the private information
Mulad Generates income by injecting ads into legitimate free apps
NickiSpy Gathers information from infected user’s smartphone and uploads the data to a specific URL

Table 4: Infection risks associated with each malware family (continued)
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Family
Name

Infection Risks

NoiconAds Compromises personal information
Pentr A Spyware and hack-tool enables penetration testing
RuFraud Sends SMS to premium rated numbers
SecApk An advertisement library that compromises your personal information

SLocker
Encrypts images, documents and videos in the SD Card to later ask for a ransom to decrypt
the files

SMSKey Interrupts the normal operations and gains access to the private information
SmsPay Mimics a legitimate app and requires an activation fee through SMS
SMSReg Registers the infected user to non-free services
SMSSend Reaps profit by silently sending SMS to premium-rate numbers
SmsSpy Attempts to steal sensitive data by seizing incoming SMS and forwards them to a remote site
SMSZombie Exploits a vulnerability in the mobile payment system used by China Mobile
SndApps Compromises your personal information
SpyHasb Monitors phone calls, SMS, and GPS locations
SpyPhone Steals personal data

Steek
A fraudulent app advertising an online income solution and steals privacy related information
and sends SMS

Tekwon Interrupts the normal operations and gains access to the private information
Utchi An advertisement library may compromise your personal information
Vdloader Steals personal information

Viser
Opens back door by use of the system loopholes to introduce some adware, browser exten-
sions, spyware or ransomware

Wallap Promises access to a wide collection of wallpapers and uses ads libraries to generate revenue
Waps An advertisement library may compromise your personal information
Wapz An advertisement library may compromise your personal information
Youmi An advertisement library may compromise your personal information
YZHCSMS Sends SMS to a premium-rate number
Zdtad An advertisement library may compromise your personal information
Zsone Sends SMS to premium rated numbers

Table 5: Infection risks associated with each malware family (continued)

Table 6 shows the results of classification per malware family, number of samples, the year that those
samples have been developed, and the percentage of malware families represented in our dataset. According
to the table, the malware families such as SMSReg, FakeInstall, SMSPay, Kungfu, and Mulad have the
biggest share of malware samples in the entire dataset, 12.3%, 10.8%, 8.4%, 6.6%, and 6.3% respectively.
The worst classification results, 40%, belongs to Minimob family with 14 samples. It is obvious that by
increasing the number of samples in the training set, our proposed ML classification algorithm will be
expected to perform the training procedure better. It can be noted in Table 6, as the size of the training set
for each malware family increases (that is, number of samples in each family), the accuracy (F1-score) gets
better. In other words, with a few amount of samples it is not reasonable to expect to achieve good prediction
accuracies from the classification algorithm.
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AdFlex 68 2013 0.40 86
ADRD 59 2010 0.37 100
Adwo 388 2011 2.4 83

Agilebinary 10 2010 0.06 100
AirPush 787 2010 4.9 93
Andup 18 2013 0.11 100

AppQuanta 39 2013 0.24 100
Asroot 12 2009 0.07 100

AutoSMS 46 2013 0.28 75
BaseBridge 608 2010 3.8 97

Boxer 21 2010 0.13 77
Cobbler 15 2011 0.09 100
DDLight 124 2011 0.78 100
Dianjin 91 2012 0.57 91
Dianle 54 2012 0.33 77

Dougalek 22 2012 0.13 93
Downloader 75 2012 0.47 83
DroidSheep 11 2011 0.06 100

Dropper 123 2014 0.77 95
Ewalls 43 2009 0.27 100
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Exploit 41 2010 0.25 100
FakeApp 104 2011 0.65 80
FakeBank 84 2014 0.52 96
FakeDoc 130 2011 0.81 100

FakeInstall 1729 2011 10.8 98
FakeTimer 21 2012 0.13 100

Feejar 12 2014 0.07 50
Geinimi 152 2010 0.95 100
Gepew 13 2014 0.08 100

GingerBreak 14 2011 0.08 67
GingerMaster 489 2011 3 90
GoldDream 126 2011 0.8 77
GoneSixty 15 2011 0.09 100

Hamob 35 2012 0.22 80
HiddenAds 44 2014 0.28 91

Igexin 42 2011 0.26 91
InfoStealer 209 2010 1.3 91
JSmsHider 11 2009 0.07 100

Kmin 187 2010 1.1 99
Kuguo 84 2012 0.52 50
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KungFu 1051 2011 6.6 98
LeadBolt 178 2011 1.1 77
Lovetrap 11 2010 0.07 100
Mecor 10 2015 0.06 100

Metasploit 23 2014 0.14 100
Minimob 14 2013 0.09 40
Mobclick 101 2010 0.63 71
MobileTX 69 2011 0.43 100

Mseg 20 2011 0.12 67
MTK 97 2013 0.61 100
Mulad 1008 2012 6.3 99

NickiSpy 11 2010 0.07 100
NoiconAds 882 2014 5.5 99

Pentr 13 2011 0.08 67
RuFraud 21 2011 0.13 93
SecApk 59 2012 0.37 50
SLocker 22 2014 0.13 100
SMSKey 34 2011 0.21 100
SmsPay 1331 2010 8.4 88
SMSReg 1916 2010 12.3 88
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SMSSend 487 2010 3 84
SMSSpy 207 2010 1.3 89

SMSZombie 18 2012 0.11 100
SndApps 23 2011 0.14 100
SpyHasb 13 2010 0.08 100
SpyPhone 23 2010 0.14 91

Steek 28 2011 0.17 91
Tekwon 16 2013 0.10 86
Utchi 26 2012 0.16 100

Vdloader 17 2012 0.10 77
Viser 36 2012 0.22 100

Wallap 88 2012 0.55 92
Waps 570 2011 3.5 78
Wapz 231 2012 1.5 75
Youmi 588 2010 3.7 82

YZHCSMS 59 2010 0.37 100
Zdtad 396 2015 2.5 99
Zsone 31 2011 0.19 86

Table 6: The number of malware samples, year developed and classification results of 78 malware families
from our experimental dataset
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Additionally, the average accuracy in terms of precision, recall, and F1-score for all 78 malware families
are reported in Table 7. We conducted a 10-fold Cross-Validation experiment to compute Mean Error Rate
for both training and testing sets. Table 8 shows the results obtained from this experiment. For the 10-fold
cross-validation, the data is randomly partitioned into 10 equal size subsamples. Of the 10 subsamples,
a single subsample is retained as the validation data for testing the model (Testcv), and the remaining 9
subsamples are used as training data (Traincv). The process is then repeated 10 times, with each of the 10
subsamples used exactly once as the validation data. The 10 results from the folds can then be averaged to
produce a single estimation.

Precision Recall F1-score Support
Avg / Total 92 92 92 3000

Table 7: Classification Report (%) for test set (unseen samples)

Traincv Mean Error Rate Testcv Mean Error Rate
CV 10-Fold 0.033359 (+/- 0.000760) 0.091460 (+/- 0.007298)

Table 8: Cross-Validation result for training set

Comparing the F1-score, as shown in Table 7, which has been obtained from evaluating our proposed
classifier against unseen samples with Testcv , Mean Error rate and the prediction from Cross-Validation
(which is equal to 92% accuracy), we can draw this conclusion that our ML classification algorithm is never
over-fitted and is able to predict unseen samples with high accuracy rate.
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6 Cumulative Classification
In this experiment, we accumulated Android malware apps and carried out cumulative classification where
the classification results are continuously updated as new malware samples are discovered. The number
of malware used in our experiment is 15, 884 samples. Figure 4 depicts the number of malware collected
by month within the period 2009 and 2015 and Figure 5 shows the cumulative graph of the malware apps
collected each month for that same period. In our cumulative classification, we used 56 different malware
groups.

Figure 4: Malware number per month

To generate the first malware group, MG1, we take the malware apps from June 2009 and September
2010 which comprises of 124 samples in order to have an initial set of samples enough to perform classi-
fication. The second data group, MG2, contains the malware from June 2009 up to October 2010; this is
achieved by adding malware belonging to upcoming month to previous months to generate the next malware
group). For MG3, we take the malware from June 2009 up to November 2010. The process is repeated until
all the malware in the dataset are incorporated into the malware groups. Finally, we ended up with having
56 groups, MG1,..., MG56 altogether, as shown in Figure 5.
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Figure 5: Malware number per month

We trained the classification algorithm, XGBoost, on each malware group, MGi and tested its perfor-
mance against malware belonging to upcoming months. We should take this point into account that malware
belonging to the next month is unseen for the classification algorithm. We computed accuracy measures in
terms of Precision, Recall, and F1-score, Figure 6. The aim was to investigate how features of old malware
samples can be of help to classify new variant of both known and unknown malware families.
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Figure 6: Accuracy measures

We performed cumulative classification to investigate how well the old malware can help us to detect
new malware. In the other word, how old malware can contribute to detecting new variant of both known and
unknown malware families. As for the accuracy measures obtained from cumulative classification, Figure 6,
at some points (e.g., February 2015) accuracy measures drops. The reason for such a decrease in classifier
performance is that we have trained the ML algorithm in certain time on data-points belonging to past up
to that time and we evaluate its performance against future data-points. In the testing dataset, there exist
some samples which are considered as zero-day malware in the wild (that is, recently developed malware).
The ML classification algorithm has not been trained on such samples and has no idea about these malware
samples which have completely different patterns in terms of features. Consequently, the classifier cannot
predict the correct label of these samples based on its past experience. As it can be seen, in next round of
cumulative classification by adding the old samples and enriching the training set we let the classifier learn
more about past data and as a result the classifier might perform better during classification stage.

7 Conclusion
In this chapter, we proposed an ML-based malware detection and classification methodology together with
the application of static analysis on an extensive dataset of Android applications. To this end, we designed
a tool, uniPDroid, to extract as many informative features as possible from our dataset. We considered
mainly features from the Dalvik bytecode. The features extracted were converted into feature vectors, each
containing 560 binary features. We then applied feature selection on the aforementioned extracted features,
which led to the selection of 101 informative binary features suitable to feed our proposed classification
methodology.

Moreover, we performed an extensive Grid-search analysis along with a 10-fold Cross-validation to tune
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the hyper-parameters of the classification algorithm to maximize the prediction accuracy. We performed
Family-by-Family classification and obtained an average accuracy score of 92% in classification of unseen
malware. In addition to this, we conducted a cumulative classification in order to investigate how well old
malware can contribute to the detection of new variants of both known and unknown (zero-day) malware.
We achieved reasonable accuracy rate, hence proving the robustness of the features extracted.

As future work, we will extend our Android application analysis and combine static analysis with fea-
tures extracted from dynamic analysis to compensate the limitation associated with static analysis and get the
best of both static and dynamic analyses. We will extract more features related to the behavior of Android
applications such as CPU and Memory consumption, Network traffic activities, Inter-Process Communica-
tions (IPC) and system calls made by applications so as to interact with Android OS. In addition to these, we
will make use of classification algorithms such as SVM along with different kernels to deal with structured
data (e.g., string, set, graph, etc.).
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