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Abstract—Since its establishment, the Android applications 
market has been infected by a proliferation of malicious 
applications. Recent studies show that rogue developers are 
injecting malware into legitimate market applications which are 
then installed on open source sites for consumer uptake. Often, 
applications are infected several times.  
In this paper, we investigate the behavior of malicious Android 
applications; we present a simple and effective way to safely 
execute and analyze them. As part of this analysis, we use the 
Android application sandbox Droidbox to generate behavioral 
graphs for each sample and these provide the basis of the 
development of patterns to aid in identifying it. As a result, we 
are able to determine if family names have been correctly 
assigned by current anti-virus vendors. Our results indicate that 
the traditional anti-virus mechanisms are not able to correctly 
identify malicious Android applications. 

 

Keywords-Android, Dynamic, Mobile malware, Behavior graph, 
Treemap, Droidbox 

I. INTRODUCTION 
The Android operating system has been recently deployed 

by various companies such as Google, Motorola, Samsung, and 
Dell. The number of Android applications has reached the 
thousands in 2012 [1]. Attackers are looking for easy and rapid 
financial gains, and smartphones are easier targets than desktop 
computers. Malicious applications include a malicious code 
segment which causes damage and harms the smart device. 
Malicious applications not only infect user data, but can also 
steal private information such as passwords, credit card 
numbers and bank account numbers from smartphones.  

Current anti-virus (AV) engines cannot deal with physical 
limitations in smartphone devices such as CPU, battery and 
memory cards. Additionally current AV methods were 
developed on malware attacking desktop computers and 
laptops[2] [3] and [4] while there are many indications that 
different kinds of malware are being developed for portable 
platforms such as smartphones[5]. 

Android applications can be installed from the Android 
marketand Amazon (https://market.android.com; 
http://www.amazon.com) as well as from many open source 
sites such as 4shared (www.4shared.com), mascobz 
(www.mascobz.com) and filecrop (www.filecrop.com). 
Malware authors can thus easily spread their malicious 
applications by downloading clean applications, injecting their  

 

 
Malicious code and then uploading them to these open source 
sites for general consumption by unwary users.  
     In the research literature on malware targeting desktops and 
laptops, one important approach has been to identify 
behavioral patterns[6] which then help to classify malware in 
the hope of better understanding its aims and so more quickly 
devising counter-measures. This is also the direction of the 
current paper. Our aim is to identify patterns of behavior in 
both benign and malicious applications which can distinguish 
one application from another. 
 

To our knowledge, the work in this paper is the first to 
examine behavior in malicious applications using DroidBox 
([7] and see Section IV). Our dataset comprises samples that 
were collected from publicly available sources. Each malicious 
application is executed for 60 seconds in a sandboxed 
environment and the generated log files are collected at the end 
of execution. Using Droidbox, we also generate two types of 
graphs (behavior graphs and treemap graphs) for each sample. 
Both graphs help us to analyze the activities performed during 
run-time and also to establish patterns between variants from 
the same malware family. These graphs also illustrate how 
some benign applications might leak data connected to short 
message service (SMS) texting and other features of the 
applications. 

However, we also show that it can be difficult to distinguish 
between malicious and benign applications based on Droidbox 
output alone. For instance, not a single malicious application in 
our (relatively small) sample set invoked a cryptographic 
activity, while several of our clean applications did so. The use 
of encryption in malware targeting desktop computers is much 
more  ([7], page 17) than appears to be the case in our Android 
sample.  

The paper is organized as follows: Section II highlights the 
main contributions from the relevant literature. Section III 
describes our methodology, including the data collection and 
the implementation of our system architecture, and describes 
our tests.Section IV gives an extensive explanation of the 
workings of DroidBox and in Section V we analyze and 
discuss the experimental results. Section VI provides a 
discussion on the limitations of our work and its implications 
for future research. 

II. RELATED WORK 
In this section we present some of the recent work related to 

the propagation of malware on the Android platform. 
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The widespread use of smartphones has provided a new 
way for malware authors to propagate infectious software. The 
application market with the highest percentage of malicious 
software is the Android market. This mobile platform saw a 
significant increase of five-fold among malicious applications 
within the first six months of 2011[8]. This is partly due to the 
loose permission granting structure currently in place for 
Android applications, as demonstrated in [9],  [10] and [11]. 

Similar to desktop malware, there exist two common 
methods to investigate the structure and behavior of Android 
malware: static analysis and dynamic analysis. We discuss 
recent work in both of these areas. 

Static 

In[12], the authors focused on Android version 2.2. In their 
work, they collected 940 applications from both the Android 
and Amazon market. They proposed a tool, Stowaway, that 
applies static analysis on the collected sample applications, and 
then they map the permission with each operation. The aim of 
Stowaway is to investigate over-privileged permissions and 
developer errors. They built API mappings inside the Android 
emulator to determine the permissions required to interact with 
system APIs. The aim of the experiment was to check 
application permission and also to add a security exception to 
the application if it does not exist. They found that 779 APIs 
invoke normal calls and 428 APIs communicate with system 
services calls.  

     A similar study in [13] performed a static analysis on 25 
Android applications using an extended version of the Julia 
system, which is a static analyser tool for Java bytecode. This 
tool can analyse dead code, nullness and termination. Since all 
Android applications are shipped in the Dalvik bytecode, they 
need to be converted to Java bytecode. The static analyzer 
keeps track of commonly used Java statements to generate an 
abstract overview of the application. The authors claim that 
their proposed framework can analyze any application even 
though its code does not include any explanatory notes from its 
initial writer. 

Dynamic 

In[14], Burguera et al. deployed their methodology in the 
form of an application, named Crowdroid, on the Android 
market. Crowdroid collects behavior patterns such as system 
calls of installed applications on the users’ devices. This 
information is sent to a remote server, where the system calls 
are clustered using a K-means algorithm into two categories: 
benign and malicious. The authors initially tested their 
framework using 4 self-written malware which resulted in 
100% detection accuracy. They then collected and executed 
two types of real-life malicious applications, labeled PJApps 
and HongToutou Trojans, from VirusTotal and with testing 
obtained 100% and 85% detection accuracy respectively.   

Blasing[15] developed an execution environment named 
AASandbox (Android Application Sandbox). The authors 
make use of the Android emulator together with the Monkey 
tool [16], which mimics the user’s behaviour so that the 
executions of applications closely resemble the ones in real-
time. AASandbox logs the time of execution, the name of the 
system call and the IDs of the processes. The environment was 

tested on 150 clean Android applications and on written 
malware. In the future, the authors will apply machine learning 
algorithms to the information retrieved from the log files in 
order to detect anomalous applications and also, implement the 
framework as a cloud service.  

Monitoring 

In addition to static and dynamic work used in identifying and 
classifying malware, a different approach to securing a system 
is to monitor it for security breaches. In this subsection we 
present some such work. 

Bugiel et al. [17] present a security framework named 
XManDroid which monitors the real-time communication 
between applications and verifies the inter-process 
communications against a set of pre-defined security policies. 
The aim is to prevent malicious applications from exploiting 
transitive permission properties to enable privilege escalation. 
In order to test their methodology, they included 7 types of 
attacks in their dataset which cover several possible scenarios 
whereby rogue applications request transitive permissions. For 
future work, the authors plan to integrate the methodology into 
the existing permission framework currently in use by Android.  

In the work carried out by Portokalidis et al. [18], Paranoid 
Android is a security model implemented on remote servers 
where identical copies of smartphones are running in a virtual 
environment. A program, which resides on the device, collects 
all the necessary information needed to replay the execution 
and transmits it to the remote server. The information is re-
executed on the virtual smartphones. The aim is to run constant 
security checks on applications while maintaining minimal 
computational and battery overhead.  

In the following section, we introduce our experimental 
environment and describe our tests. 

III. DATASETS AND ENVIRONMENT 
In this section we provide details about dataset collection 

for both malicious and benign applications. Additionally, this 
section describes how we setup the experimental environment 
to monitor behavior for these applications. 

A. Datasets 
� Clean Applications Collection: 

For the clean application samples, we chose 23 popular 
downloadable applications from the Android market. 

As mentioned earlier, Android applications in the Android 
market may be infected with malware([14] and [19]). In order 
to ensure that the clean applications chosen were really clean, 
we tested them by uploading each sample individually to 
VirusTotal where five robust AV engines (Sophos, Symantec, 
F-Secure, TrendMicro and MacAfee) were used to verify 
cleanness.  

The samples chosen were: adobe_flash_player, 
android_market, beautifulwidgetsbetterlayouts, antivirus, 
applanet, cut-the-rope, doodle, ebuddy, facebook, 
fancywidgetpro, fruitninja, gamefly, gingerbreak, googlemaps, 
imdb, kayak, mob4, mobi, nav4, pes2011, shazamencore, 
Shirley, youtubedownloader.  
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� Malicious Applications Collection: 

Smartphone malicious applications can be collected from 
several open source sites such as Contagion, Offensive and 
VXHeavens. Malware samples used in this research were 
collected from Contagiodump[20] which provides smartphone 
malware that infects various smartphone platforms such as 
Android, iPhone, BlackBerry and Windows mobile. Since we 
were only interested in malware that targeted Android devices, 
we picked from the Contagiodump folder files only those 
applications with the following extensions: 

a) Application package file (.apk)  

b) Java archive (.jar) 

This left us with 44 malicious applications targeting 
Android-based devices. In order to determine if some were 
variants of others, we again employed VirusTotal and used 
only Sophos to name them and group them into families. 
Family naming is a vendor-specific process and so not all AV 
vendors would adopt the same nomenclature as Sophos, so one 
aim of our first test was to determine how accurate their 
naming was. 

Since we were interested in examining families, we show in 
Table 1 those malware families we obtained, their Sophos 
names, and the number of variants for each family, as long as 
this was at least 2, along with the time period in which they 
first appeared as identified by Sophos. This leaves us with a 
total of 33 malicious applications grouped into families. 

B. Experimental Environment 
We ran each application, both malicious and benign, in a 

the Droidbox sandbox environment. We were particularly 
careful to prevent contamination of our samples. Before 
starting, we generated the three hashes, MD5, SHA1 and 
SHA256 [21], and after each test, the hashes were again 
generated to ensure that the code had not been changed.  

We ran both benign and malicious applications in the 
DroidBox sandbox [7]which monitors API calls and data leaks.  
DroidBox was designed to enable interaction with a sample, 
collecting certain information about its activities over a fixed 
time period, and had to be manually terminated by the user. We 

modified it to automatically stop monitoring each sample after 
exactly 60 seconds so that we could compare the output for the 
samples more easily.  (Other research on malware for desktop 
computers indicates that 60 secs is sufficient to extract the 
important information [22], however, this is likely to change in 
the mobile environment as applications can be returned to 
markets to be redistributed possibly with multiple infections.) 

Figure 1 describes the architecture of our experiment. The 
clean applications were scanned through Symantec antivirus, 
installed on the host machine, and then uploaded to VirusTotal 
to confirm cleanness.  

Next, both clean and malicious samples were run through 
DroidBox that was installed in the VM machine. We created a 
virtual device configuration for each sample in order to avoid 
contamination. The sandbox environment comprised an 
Android emulator and Android SDK, which provides the tools 
and APIs necessary to develop applications on the Android 
platform using Java. For each sample, DroidBox created a log 
file and two graphs visualizing the behavior; these items were 
used in the analysis of the data. 

� Setting up the sandbox environment. 

The research laptop had Windows 7 installed with the 
following specifications: i7 CPU 2.7 GHZ, 8 GB RAM DDR3 
and 720 GB hard disk; on the machine, we also installed the 
virtual machine VMware player version 3.1.1 build-282343. 
Inside the virtual machine we installed Ubuntu 11.10 32bit and 
the following: 

a) Android SDK  (A Software Development Kit that allows 
users to create and test Android applications. 
http://developer.android.com/sdk/index.html) 

b) PyLab and Matplotlib (Which provide visualization of the 
analysis results. http://matplotlib.sourceforge.net/and 
http://www.scipy.org/PyLab 

c) HashMyFiles v1.80  (A utility to calculate hash values. 
http://www.nirsoft.net/utils/hash_my_files.html) 

Since mobile malware can be spread from mobile device to 
PC or vice versa [23], we cancelled all interaction between the 
virtual machine and the Windows host during analysis. 

� Checking Hash Values. 

In this section we explain how we checked the applications 
hashes before and after exaction. The main reason for checking 
the hash value is to check if the application changes during the 
analysis. 

1. We used HashMyFiles installed in the Windows host 
to generate the hash value. 

2. For both malicious and benign applications, we 
generated the three hash values MD5, SHA1 and SH256 and 
copied them into a spread sheet with the date and time taken. 

 

 

 

 

TABLE 1.Malicious applicationsSophos family names and number of 
variants used 

Family Name No. of Variant Appearance time period  

BBridge 5 Oct 2011 – Dec 2011 

PJApps 5 Jun 2011 – Dec 2011 

RootCage 3 Oct 2011 – Nov 2011 

Gone60 5 Dec 2011 

SMSRep 4 Aug 2011 – Dec 2011 

Kmin 4 Oct 2011 – Nov 2011 

KongFu 3 Jun 2011 – Oct 2011 

AdmSMS 2 Jul 2011 – Nov 2011 

FakPlay 2 Mar 2011 – Apr 2011 
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F igure 1.  Architecture of the Behavior Monitoring 

3. After running each sample for 60 secs in Droidbox, we 
again generated the three hash functions and checked for 
differences. 

It is noteworthy that in all cases, the hash functions before 
and after execution matched, indicating that there had been no 
change to the sample. 

� The Tests. 

Our first test is on the families of malicious applications 
identified by Sophos in Table 1. In Section V, we combine the 
information from the graphs generated by Droidbox by family 
to see if the graphs indeed appear to represent the family. We 
also consider family designations by Sophos, TrendMicro and 
F-Secure also available in VirusTotal (See Table 2). 

In our second test, we examine the benign applications to 
determine if there is any suspicious behavior. In fact, we find 
that several of them leak information and so can be considered 
suspicious or prone to abuse by malware writers. This will lead 
us, in future work, to try to determine if such applications could 
be easily compromised. 

IV. DROIDBOX 
We devote this section to a detailed description of Droidbox 

and its capabilities. DroidBox[24] is a dynamic analysis tool 
for Android applications targeting Android version 2.1. The 
tool is based on TaintDroid[25] for detecting information leaks 
but has been extended, by modifying the Android framework, 
to monitor API calls of interest invoked by an application. 

Applications are executed within the Android SDK 
emulator and logs are issued for each monitored behavior and 
collected in the host operating system.  A text-based report is 
generated after analysis has ended and provides a summary of 

the execution. Additionally, two graphs are generated to 
visualize the behavior of a sample, see Figures 2 and 3 for 
examples. 

On mobile phones, malware has been discovered that 
listens for incoming SMS and forwards this information to the 
attacker. In [25], TaintDroid was used to track sensitive data 
originating from the phone’s database. DroidBox can extend 
this approach by adding and modifying output channels 
throughout the Android framework to detect leaks via outgoing 
SMS and to disclose full details of the network communication, 
not only in network leak scenarios.  

The file AndroidManifest.xml, included in the Android 
package, contains permissions that are needed for the 
application to interact with the operating system, for example, 
connecting to the Internet, sending SMS, making calls and 
receiving incoming SMS. Applications that need to interact 
with any resources must declare the appropriate permission in 
the manifest file. It has been demonstrated that malicious 
Android applications can circumvent the permission 
policies[26] and [27], thus DroidBox compares each monitored 
operation that requires any permission with the package’s 
manifest file to check if any permission policy has been 
bypassed. 

Some malicious Android applications can evade anti-virus 
software by performing obfuscation and changing themselves 
during run-time [28]. Obfuscation may include cryptographic 
functions applied to the data. DroidBox is designed to detect 
applications as they invoke cryptographic keys or perform 
encryption or decryption on the data 

Malicious Android applications can perform phone calls or 
send SMS to premium rate numbers that are declared by the 
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attacker. DroidBox can disclose these operations by listening to 
API calls when SMS and calling methods are invoked by a 
sample. 

A. Treemaps 
Treemaps[29] display a tree structured graph and its data as 

nested rectangles. Each branch of the tree is assigned a 
rectangle that is divided into smaller rectangles representing 
sub-branches. The area of a rectangle is proportional to the 
dimension of the data in the leaf node and each leaf node is 
colored for visual clarity.  The main motivation for the use of 
treemaps is to provide a human visualization of tree-structures 
that simplify the presentation of multi-dimensional data. The 
authors of [30] used treemaps (and other graphs) in malware 
analysis arguing that they “can effectively support a human 
analyst” in detecting and classifying malicious behavior.  

Figure 2 shows an example of a treemap generated for the 
benign sample called Doodle.apk, that is the popular Doodle 
Jump game; the cyan colored part represents the section 
related to services that have been started, yellow part 
represents file activity, in this case write operations and the 
red part shows the network write operations. In general, the 
wider a section becomes (horizontally), the more frequently 
the corresponding operation is executed; the higher a section 
rises (vertically), the more frequently the corresponding 
operation has occurred within the section. The position of the 
sections and operations are fixed, as well as the color (which 
represents operation type). 

 
F igure 2.  An example of a Treemap Graph 

 

B. Behavior Graph 

The behavior graph produced by Droidbox describes the 
temporal order of the operations. Figure 3 shows the output of 
the sample doodle.apk that was executed for 60 seconds. On 
the x- axis the time of the monitored operation is shown, while 

the y-axis describes what kind of operation type was 
monitored. This graph is generated by picking operations and 
timestamps for each operation from the sandbox log and 
plotting them.  

 
F igure 3.  An example of a Behavior Graph 

V. EXPERIMENTAL RESULTS 
In this section, we give the details of the two tests described in 
Section III. 

We observed that the majority of the malicious 
applications in our dataset are games or applications intended 
for changing the wallpaper. We also observed that during 
execution of the two applications classified by Sophos as the 
AdmSMS family, other operations were performed in the 
background without the user’s knowledge. Figure 4 shows a 
snapshot from the log file generated by this family; it appears 
that the application sends SMS after 20 seconds from the start 
of the execution. The log shows when the application tried to 
send an SMS, what the message was and to which number it 
was being sent. The malicious activity has messages sent to a 
premium-rate number. 

 
F igure 4.  Snapshot of AdmSMS family log output 
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Naming of Malicious Families 

In order to determine if existing anti-virus engines were 
classifying Android-based malware accurately, we compared 
the names assigned to the 33 samples in Table 1 by three 
vendors: Sophos, TrendMicro and F-Secure and then 
considered the Droidbox graphs for the samples to see if there 
was support there for the assigned names. Table 2 gives the 
raw output of the three AV vendor names along with the 
decision of the research team based on Droidbox output.   

 
As is evident from the data in the table, in many cases, the 

AV vendors disagreed on the labels. We do not know how 
long the AV vendors executed samples when trying to identify 
them and different times may have been used. As mentioned 
earlier in the paper, in our testing, we used one minute. 
Differences in time of execution (and in the environment) may 
account for the differences of opinion in the table. 

Regarding the samples numbered 1a,b,c,d,e: the first three 
all use the service and netwrite operations. Filewrite is also 
used by 1a and 1c. However, 1d does not use service and 
because of this, may not belong in the bridge family. 1e does 
use service, but not netwrite; it does use filewrite, so it may be 
bridge. 

Now samples 3 (not classified by F-Secure), 4,5 and 6 all 
use service and netwrite. Some, but not all, use netopen. While 
the vote of the AV vendors F-Secure and TrendMicro identifies 
them as DroidDream, both Sophos and our analysis identifies 
them as PJapps. However, why is this not the same family as 
bridge?  (Sample 23 also uses service and netwrite and so could 
be included in the bridge family.) 

 
     There were also some difficulties with the families Gone 
and RootCage. In comparing them, samples 7,8 and 9 
(designated RootCage by Sophos and given other names by 
the other vendors) all call netwrite twice and nothing else. 
Gone 60 (10a) calls netwrite 3 times and open once while 
10b,c, d and e all call netwrite exactly twice and have behavior 
and treemap graphs that look exactly like those of the 
RootCage samples. 
 
     So as far as we can see, based on our behavior graphs, 
seven of these samples are equivalent. Only one (10a) is 
different. Thus, there may really be only one family here apart 
from the single exception. We noticed also that 10b, c ,d and e 
all appeared on the same date - 29/09/2011 while 10a appeared 
on 23/09/2011. It may be the case that 10a was a trial version 
that the malware author released on the market before 
changing to the others. The five samples 10a, b,c,d and e are 
shown in Figure 6. 
 
      On a final note in the discussion of the Table 2 data, we 
raise the question: should a sample only belong to a family 
with SMS in the name if the graph includes SMS as an 
operation?  It may be the case that since we only run the 
 

TABLE 2. Classification decisions 

App 
No. 

F-Secure Trend-Micro Sophos Our decision 

1a 
BaseBridge.

A!mfb BRIDGE.AK 
BBridge-F BBridge 

1b 
BaseBridge.

A BBRIDGE.M BBridge-E BBridge 

1c 
BaseBridge.

A BBRIDGE.A BBridge-E Bbridge 

1d 
BaseBridge.

A BRIDGE.B BBridge-A ?? 

1e 
BaseBridge.

A BRIDGE.B BBridge-A Bbridge 

2 
DroidDream.

B 
DORDRAE.

L PJApps-E ?? 

3 
 DORDRAE.

N PJApps-E PJApps 

4 
DroidDream.

B 
DORDRAE.

L PJApps-D PJApps 

5 
DroidDream.

B 
DORDRAE.

L PJApps-D PJApps 

6 
DroidDream.

B 
DORDRAE.

L PJApps-D PJApps 

7 
DroidRooter.

A LOTOOR.A 
RootCage-

A gone or rootcage 

8 
DroidRooter.

A LOTOOR.A 
RootCage-

A gone or rootcage 

9 
DroidRooter.

A LOTOOR.A 
RootCage-

A gone or rootcage 

10a GoneSixty.A 
GONESIXT

Y.A Gone60-A Gone 

10b GoneSixty.A 
GONESIXT

Y.A Gone60-A gone or rootcage 

10c 
GoneSixty.A GONESIXT

Y.A Gone60-A gone or rootcage 

10d 
GoneSixty.A GONESIXT

Y.A Gone60-A gone or rootcage 

10e 
GoneSixty.A GONESIXT

Y.A Gone60-A 
gone or rootcage 

11 Jifake.A JIFAKE.E 
SMSRep-

M 
SMSRep or 

JIFake 

12 HippoSms.A 
HIPPOSMS.

A SMSRep-D SMSRep 
13 Lovetrap.A LUVTRAP.A MSRep-G ?? 
14 Kmin.A!mfb KMIN.SMA Kmin-C ?? 

15 Kmin.A!mfb KMIN.A 
Andr/Kmin

-D ?? 
16 Kmin.A!mfb KMIN.SMA Kmin-C ?? 
17 Kmin.A!mfb KMIN.A Kmin-D ?? 

18 
DroidKungF

u.A KUNGFU.B KongFu-A KongFu 

19 
DroidKungF

u.A GONFU.A KongFu-A KongFu 

20 
DroidKungF

u.A 
DROIDKUN

GFU.B KongFu-B KongFu 
21 Zsone.A!mfb CLICKER.A AdSMS-B AdSMS 
22 AdSMS.A ADSMS.A AdSMS-A ?? 

23 
Fakeplayer.B

!mfb 
FAKEMOBI.

D FakPlay-C ?? 

24 
Fakeplayer.B

!mfb FAKEP.A FakPlay-D ?? 
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F igure 6.  Combined Behavior Graphs for the Gone family (10) 

application for 60 secs., a true ‘SMS’ type does not indicate 
that it used the SMS operation because it was not run for 
sufficiently long. However, we may need to run an application 
for several hours or to have it run in a specific environment in 
order to force it to reveal that it may eventually use SMS. This 
affects numbers 11, 12, 13, 21, 22, 24. 
 

The malicious application named com.Beauty.Girl-1 was 
found by VirusTotal but was not identified by any of the three 
AV vendors above as being in any family of Table 1. It is 
described by Figure 7. 

 
F igure 7.  Treemap for com.Beauty.Girl-1 

 
Based on the Droidbox graphs, we would place this sample 

in the PJAppsfamily as it, along with samples 4, 5 and 6, uses 
all of service, filewrite, netopen and netwrite. It may well be 
possible to use our graph approach to identify many other 
Android applications not yet identified by the AV vendors. 

 

Broadcast Receivers 
 
While executing malicious applications, we observed that 
almost all of them listen to broadcast receivers such as 
BOOT_COMPLETE, SEND_MESSAGE, SMS_RECEIVED 
and OUTGOING_CALL whereas the benign set of 
applications did not register any such receivers. The Android 
system sends broadcasts to receivers as announcement for 
events such as loss of battery power. Both benign and 
malicious applications can also send broadcast messages as 
‘intent messages’ to the system, for example, indicating that 
applications are waiting for an event. Broadcast receiver 
attackers can design their malicious application to listen for 
incoming messages and forward them to predetermined or 
premium numbers. 
 

Zeus[31] is an example of such a malicious application; it 
appeared in late 2011 and aims to steal online banking data by 
spying on incoming messages. Once the device receives an 
SMS, the application hiding inside it forwards it to a 
predetermined number. Zitmo, a variant of Zeus, opens an 
Internet connection upon capturing an SMS and forwards the 
message via the network. Figure 8 shows a snapshot of the 
Zitmo log. 

 
F igure 8.  Snapshot ofZitmo log output 

 

Clean Applications 

 In Section IIIA, we listed the clean applications that were 
examined in our experiments. Even though these applications 
were verified as being benign by VirusTotal, some of them we 
deemed to be suspicious by virtue of the fact that they were 
shown to leak information. A summary of the samples with 
suspicious leaks follows: 

CleanApp1: Writes IMEI to config file and leaks two times 
the IMEI value via the network sink. 
CleanApp2: Leaks IMEI and IMSI value in one HTTP GET 
request. 
CleanApp3: Writes IMEI to config file. Leaks IMEI twice in 
an HTTP GET request to data.mobclix.com and leaks IMEL 
together with other database values (OTHERDB) to 
www.umeng.com. 
CleanApp3 is the only application in our set that leaks with tag 
OTHERDB, designating data originating from database URIs 
that are not common; this data could be anything, even its own 
application data. However, a clean file should not be calling 
any logs or stored SMS. CleanApp1 and CleanApp3 have 
very similar treemaps, however they connect to completely 
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different servers; while they appear to be benign, and they 
violate privacy rules and misuse permissions. In future work, 
we will look for and test such clean files more extensively to 
determine why and how they leak data. 

We were able to incorporate the ‘leak’ operation into the 
generation of graphs and Figure 9 is a picture of the treemap 
graph for CleanApp3 where the netleak is indicated in the top 
right-hand bar. 

 
F igure 9. Treemap of CleanApp3 showing a net leak. 

 

Comparison with Other Work 
 

To our knowledge, the current paper is the first paper to 
examine malicious applications behavior using Droidbox. In 
making the decision to work with Droidbox rather than 
CWSandbox[32], for example, which was used in [30], we 
relied on the work of Lantz in [7]. In that thesis, the sandbox 
approach was transformed from the desktop platform to mobile 
devices, and while many operations, such as file and network 
activity, are common, SMS and phone activity as well as use of 
the DexClassLoader are peculiar to the mobile operating 
system and the library link operations are slightly different. In 
addition, Droidbox has the advantage of being an open source 
project, while we did not have access to the source code for any 
other suitable sandbox environment. 

 
     In [30], Trinius et al. consider a situation similar to ours, 
but based in a wired computer environment rather than that of 
mobile devices. Like us, they study techniques to visualize the 
actions of malware with the aim of both detecting and 
classifying it. Also like us, they use two means of 
visualization, one with treemaps and the other with thread 
graphs; we, on the other hand, use treemaps and behavior 

graphs. As described in the previous section, treemaps use a 
combination of colour and area in a rectangle to give a fast 
visual representation of the type and number of API calls they 
represent. Thread graphs present the chronological behavior of 
a sample showing what actions were performed and when. The 
authors of [30] use a combination of the treemap and thread 
graph to provide them with a ‘behavioural fingerprint’ of a 
sample.  
 

We developed our behavior graph for the purpose of 
replacing the thread graph, but using non-proprietary software. 
Rather than visualize each individual thread, we gathered an 
overview of the behavior. Operations and times were extracted 
from the Droidboxsandbox logs and plotted using Python 
Matlab libraries[33]. This gave us access to the same type of 
visualisation information available to Trinius et al. in[30]. In 
experimentation, they use a set of 2,000 computer malware 
samples pre-classified unanimously by six major anti-virus 
softwares into 13 families. They executed the samples in a 
sandbox environment for two minutes and used the two types 
of visualization methods to consider the similarities and 
differences.  In many cases they were able to distinguish 
between families based on these graphs, and also show that 
members of the same pre-classified family had similar graphs. 
They state (Section 5): “The images of different malware 
samples are visually different, but samples of the same 
malware are almost identical. Nevertheless, this does not apply 
for all classes. Since the results of behavior-based analysis 
depends on several variables which are beyond the analyst’s 
control (e.g., in case the command and control server of a bot is 
unreachable, the bot will show an entirely different behavior) a 
perfect clustering seems infeasible.” Thus, the authors of [30] 
come to a conclusion similar to ours, however, based on a 
much larger dataset. 

In considering the differences in data used, we point out 
that the malware used by Trinius et al. [30] were executables 
captured by a honeypot in 2009. Thus, they are single files 
several years in age, and classical anti-virus technology has had 
the time to agree on correct family labels for them. In the case 
of the data used in the current paper, we are using twenty-three 
very recent (all dated 2011) malicious applications (containing 
several files and folders rather than single executables) which 
target the mobile phone environment. 

VI. DISCUSSION AND FUTURE WORK 
We compared family identification by three major anti-

virus vendors with results of Droidbox and were able to find 
support for the argument that these vendors were in some cases 
incorrect. We demonstrated that while applications may be 
classed as benign by these same vendors, some could 
nevertheless be leaking data and so be prone to easy misuse by 
malware writers.  

We have demonstrated that Droidbox can be a very useful 
tool both in classifying malicious Android applications and in 
determining weaknesses in benign Android applications. Some 
of the limitations of DroidBox are that it only monitors 
operations performed within the Android framework. Thus, any 
native code could potentially leak data that goes unnoticed.  
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Another obstacle is that when running the analysis, some of 
the malicious behavior is hidden and only triggered on certain 
events, such as on incoming SMS. Since we do not interact 
with the sample during analysis, such hidden behavior is not 
viewed in the results. Additionally, all samples were executed 
for the same length of time, while malicious activity can be 
triggered at varying times in different samples. However, these 
are common problems with all experiments run in a 
standardized environment. 

In our future work, we will examine Android application 
family classification more extensively and also investigate the 
implications of data leakages in benign applications. We will 
also extend DroidBox to provide more detailed API 
monitoring. Broadcast receivers and their role in identifying 
malicious applications will also be part of our future 
investigations. 
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