

Analysis of Malicious and Benign Android
Applications

MoutazAlazab, VeelashaMoonsamy Lynn Batten and

RonghuaTian
School of Information Technology

Deakin University, Australia
{malazab, v.moonsamy, lynn.batten, rtia}@deakin.edu.au

Patrik Lantz

Ericsson Research
221 83 Lund, Sweden

{patrik.lantz}@ericsson.com

Abstract—Since its establishment, the Android applications
market has been infected by a proliferation of malicious
applications. Recent studies show that rogue developers are
injecting malware into legitimate market applications which are
then installed on open source sites for consumer uptake. Often,
applications are infected several times.
In this paper, we investigate the behavior of malicious Android
applications; we present a simple and effective way to safely
execute and analyze them. As part of this analysis, we use the
Android application sandbox Droidbox to generate behavioral
graphs for each sample and these provide the basis of the
development of patterns to aid in identifying it. As a result, we
are able to determine if family names have been correctly
assigned by current anti-virus vendors. Our results indicate that
the traditional anti-virus mechanisms are not able to correctly
identify malicious Android applications.

Keywords-Android, Dynamic, Mobile malware, Behavior graph,
Treemap, Droidbox

I. INTRODUCTION
The Android operating system has been recently deployed

by various companies such as Google, Motorola, Samsung, and
Dell. The number of Android applications has reached the
thousands in 2012 [1]. Attackers are looking for easy and rapid
financial gains, and smartphones are easier targets than desktop
computers. Malicious applications include a malicious code
segment which causes damage and harms the smart device.
Malicious applications not only infect user data, but can also
steal private information such as passwords, credit card
numbers and bank account numbers from smartphones.

Current anti-virus (AV) engines cannot deal with physical
limitations in smartphone devices such as CPU, battery and
memory cards. Additionally current AV methods were
developed on malware attacking desktop computers and
laptops[2] [3] and [4] while there are many indications that
different kinds of malware are being developed for portable
platforms such as smartphones[5].

Android applications can be installed from the Android
marketand Amazon (https://market.android.com;
http://www.amazon.com) as well as from many open source
sites such as 4shared (www.4shared.com), mascobz
(www.mascobz.com) and filecrop (www.filecrop.com).
Malware authors can thus easily spread their malicious
applications by downloading clean applications, injecting their

Malicious code and then uploading them to these open source
sites for general consumption by unwary users.
 In the research literature on malware targeting desktops and
laptops, one important approach has been to identify
behavioral patterns[6] which then help to classify malware in
the hope of better understanding its aims and so more quickly
devising counter-measures. This is also the direction of the
current paper. Our aim is to identify patterns of behavior in
both benign and malicious applications which can distinguish
one application from another.

To our knowledge, the work in this paper is the first to
examine behavior in malicious applications using DroidBox
([7] and see Section IV). Our dataset comprises samples that
were collected from publicly available sources. Each malicious
application is executed for 60 seconds in a sandboxed
environment and the generated log files are collected at the end
of execution. Using Droidbox, we also generate two types of
graphs (behavior graphs and treemap graphs) for each sample.
Both graphs help us to analyze the activities performed during
run-time and also to establish patterns between variants from
the same malware family. These graphs also illustrate how
some benign applications might leak data connected to short
message service (SMS) texting and other features of the
applications.

However, we also show that it can be difficult to distinguish
between malicious and benign applications based on Droidbox
output alone. For instance, not a single malicious application in
our (relatively small) sample set invoked a cryptographic
activity, while several of our clean applications did so. The use
of encryption in malware targeting desktop computers is much
more ([7], page 17) than appears to be the case in our Android
sample.

The paper is organized as follows: Section II highlights the
main contributions from the relevant literature. Section III
describes our methodology, including the data collection and
the implementation of our system architecture, and describes
our tests.Section IV gives an extensive explanation of the
workings of DroidBox and in Section V we analyze and
discuss the experimental results. Section VI provides a
discussion on the limitations of our work and its implications
for future research.

II. RELATED WORK
In this section we present some of the recent work related to

the propagation of malware on the Android platform.

2012 32nd International Conference on Distributed Computing Systems Workshops

1545-0678/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDCSW.2012.13

608

The widespread use of smartphones has provided a new
way for malware authors to propagate infectious software. The
application market with the highest percentage of malicious
software is the Android market. This mobile platform saw a
significant increase of five-fold among malicious applications
within the first six months of 2011[8]. This is partly due to the
loose permission granting structure currently in place for
Android applications, as demonstrated in [9], [10] and [11].

Similar to desktop malware, there exist two common
methods to investigate the structure and behavior of Android
malware: static analysis and dynamic analysis. We discuss
recent work in both of these areas.

Static

In[12], the authors focused on Android version 2.2. In their
work, they collected 940 applications from both the Android
and Amazon market. They proposed a tool, Stowaway, that
applies static analysis on the collected sample applications, and
then they map the permission with each operation. The aim of
Stowaway is to investigate over-privileged permissions and
developer errors. They built API mappings inside the Android
emulator to determine the permissions required to interact with
system APIs. The aim of the experiment was to check
application permission and also to add a security exception to
the application if it does not exist. They found that 779 APIs
invoke normal calls and 428 APIs communicate with system
services calls.

 A similar study in [13] performed a static analysis on 25
Android applications using an extended version of the Julia
system, which is a static analyser tool for Java bytecode. This
tool can analyse dead code, nullness and termination. Since all
Android applications are shipped in the Dalvik bytecode, they
need to be converted to Java bytecode. The static analyzer
keeps track of commonly used Java statements to generate an
abstract overview of the application. The authors claim that
their proposed framework can analyze any application even
though its code does not include any explanatory notes from its
initial writer.

Dynamic

In[14], Burguera et al. deployed their methodology in the
form of an application, named Crowdroid, on the Android
market. Crowdroid collects behavior patterns such as system
calls of installed applications on the users’ devices. This
information is sent to a remote server, where the system calls
are clustered using a K-means algorithm into two categories:
benign and malicious. The authors initially tested their
framework using 4 self-written malware which resulted in
100% detection accuracy. They then collected and executed
two types of real-life malicious applications, labeled PJApps
and HongToutou Trojans, from VirusTotal and with testing
obtained 100% and 85% detection accuracy respectively.

Blasing[15] developed an execution environment named
AASandbox (Android Application Sandbox). The authors
make use of the Android emulator together with the Monkey
tool [16], which mimics the user’s behaviour so that the
executions of applications closely resemble the ones in real-
time. AASandbox logs the time of execution, the name of the
system call and the IDs of the processes. The environment was

tested on 150 clean Android applications and on written
malware. In the future, the authors will apply machine learning
algorithms to the information retrieved from the log files in
order to detect anomalous applications and also, implement the
framework as a cloud service.

Monitoring

In addition to static and dynamic work used in identifying and
classifying malware, a different approach to securing a system
is to monitor it for security breaches. In this subsection we
present some such work.

Bugiel et al. [17] present a security framework named
XManDroid which monitors the real-time communication
between applications and verifies the inter-process
communications against a set of pre-defined security policies.
The aim is to prevent malicious applications from exploiting
transitive permission properties to enable privilege escalation.
In order to test their methodology, they included 7 types of
attacks in their dataset which cover several possible scenarios
whereby rogue applications request transitive permissions. For
future work, the authors plan to integrate the methodology into
the existing permission framework currently in use by Android.

In the work carried out by Portokalidis et al. [18], Paranoid
Android is a security model implemented on remote servers
where identical copies of smartphones are running in a virtual
environment. A program, which resides on the device, collects
all the necessary information needed to replay the execution
and transmits it to the remote server. The information is re-
executed on the virtual smartphones. The aim is to run constant
security checks on applications while maintaining minimal
computational and battery overhead.

In the following section, we introduce our experimental
environment and describe our tests.

III. DATASETS AND ENVIRONMENT
In this section we provide details about dataset collection

for both malicious and benign applications. Additionally, this
section describes how we setup the experimental environment
to monitor behavior for these applications.

A. Datasets
� Clean Applications Collection:

For the clean application samples, we chose 23 popular
downloadable applications from the Android market.

As mentioned earlier, Android applications in the Android
market may be infected with malware([14] and [19]). In order
to ensure that the clean applications chosen were really clean,
we tested them by uploading each sample individually to
VirusTotal where five robust AV engines (Sophos, Symantec,
F-Secure, TrendMicro and MacAfee) were used to verify
cleanness.

The samples chosen were: adobe_flash_player,
android_market, beautifulwidgetsbetterlayouts, antivirus,
applanet, cut-the-rope, doodle, ebuddy, facebook,
fancywidgetpro, fruitninja, gamefly, gingerbreak, googlemaps,
imdb, kayak, mob4, mobi, nav4, pes2011, shazamencore,
Shirley, youtubedownloader.

609

� Malicious Applications Collection:

Smartphone malicious applications can be collected from
several open source sites such as Contagion, Offensive and
VXHeavens. Malware samples used in this research were
collected from Contagiodump[20] which provides smartphone
malware that infects various smartphone platforms such as
Android, iPhone, BlackBerry and Windows mobile. Since we
were only interested in malware that targeted Android devices,
we picked from the Contagiodump folder files only those
applications with the following extensions:

a) Application package file (.apk)

b) Java archive (.jar)

This left us with 44 malicious applications targeting
Android-based devices. In order to determine if some were
variants of others, we again employed VirusTotal and used
only Sophos to name them and group them into families.
Family naming is a vendor-specific process and so not all AV
vendors would adopt the same nomenclature as Sophos, so one
aim of our first test was to determine how accurate their
naming was.

Since we were interested in examining families, we show in
Table 1 those malware families we obtained, their Sophos
names, and the number of variants for each family, as long as
this was at least 2, along with the time period in which they
first appeared as identified by Sophos. This leaves us with a
total of 33 malicious applications grouped into families.

B. Experimental Environment
We ran each application, both malicious and benign, in a

the Droidbox sandbox environment. We were particularly
careful to prevent contamination of our samples. Before
starting, we generated the three hashes, MD5, SHA1 and
SHA256 [21], and after each test, the hashes were again
generated to ensure that the code had not been changed.

We ran both benign and malicious applications in the
DroidBox sandbox [7]which monitors API calls and data leaks.
DroidBox was designed to enable interaction with a sample,
collecting certain information about its activities over a fixed
time period, and had to be manually terminated by the user. We

modified it to automatically stop monitoring each sample after
exactly 60 seconds so that we could compare the output for the
samples more easily. (Other research on malware for desktop
computers indicates that 60 secs is sufficient to extract the
important information [22], however, this is likely to change in
the mobile environment as applications can be returned to
markets to be redistributed possibly with multiple infections.)

Figure 1 describes the architecture of our experiment. The
clean applications were scanned through Symantec antivirus,
installed on the host machine, and then uploaded to VirusTotal
to confirm cleanness.

Next, both clean and malicious samples were run through
DroidBox that was installed in the VM machine. We created a
virtual device configuration for each sample in order to avoid
contamination. The sandbox environment comprised an
Android emulator and Android SDK, which provides the tools
and APIs necessary to develop applications on the Android
platform using Java. For each sample, DroidBox created a log
file and two graphs visualizing the behavior; these items were
used in the analysis of the data.

� Setting up the sandbox environment.

The research laptop had Windows 7 installed with the
following specifications: i7 CPU 2.7 GHZ, 8 GB RAM DDR3
and 720 GB hard disk; on the machine, we also installed the
virtual machine VMware player version 3.1.1 build-282343.
Inside the virtual machine we installed Ubuntu 11.10 32bit and
the following:

a) Android SDK (A Software Development Kit that allows
users to create and test Android applications.
http://developer.android.com/sdk/index.html)

b) PyLab and Matplotlib (Which provide visualization of the
analysis results. http://matplotlib.sourceforge.net/and
http://www.scipy.org/PyLab

c) HashMyFiles v1.80 (A utility to calculate hash values.
http://www.nirsoft.net/utils/hash_my_files.html)

Since mobile malware can be spread from mobile device to
PC or vice versa [23], we cancelled all interaction between the
virtual machine and the Windows host during analysis.

� Checking Hash Values.

In this section we explain how we checked the applications
hashes before and after exaction. The main reason for checking
the hash value is to check if the application changes during the
analysis.

1. We used HashMyFiles installed in the Windows host
to generate the hash value.

2. For both malicious and benign applications, we
generated the three hash values MD5, SHA1 and SH256 and
copied them into a spread sheet with the date and time taken.

TABLE 1.Malicious applicationsSophos family names and number of
variants used

Family Name No. of Variant Appearance time period

BBridge 5 Oct 2011 – Dec 2011

PJApps 5 Jun 2011 – Dec 2011

RootCage 3 Oct 2011 – Nov 2011

Gone60 5 Dec 2011

SMSRep 4 Aug 2011 – Dec 2011

Kmin 4 Oct 2011 – Nov 2011

KongFu 3 Jun 2011 – Oct 2011

AdmSMS 2 Jul 2011 – Nov 2011

FakPlay 2 Mar 2011 – Apr 2011

610

F igure 1. Architecture of the Behavior Monitoring

3. After running each sample for 60 secs in Droidbox, we
again generated the three hash functions and checked for
differences.

It is noteworthy that in all cases, the hash functions before
and after execution matched, indicating that there had been no
change to the sample.

� The Tests.

Our first test is on the families of malicious applications
identified by Sophos in Table 1. In Section V, we combine the
information from the graphs generated by Droidbox by family
to see if the graphs indeed appear to represent the family. We
also consider family designations by Sophos, TrendMicro and
F-Secure also available in VirusTotal (See Table 2).

In our second test, we examine the benign applications to
determine if there is any suspicious behavior. In fact, we find
that several of them leak information and so can be considered
suspicious or prone to abuse by malware writers. This will lead
us, in future work, to try to determine if such applications could
be easily compromised.

IV. DROIDBOX
We devote this section to a detailed description of Droidbox

and its capabilities. DroidBox[24] is a dynamic analysis tool
for Android applications targeting Android version 2.1. The
tool is based on TaintDroid[25] for detecting information leaks
but has been extended, by modifying the Android framework,
to monitor API calls of interest invoked by an application.

Applications are executed within the Android SDK
emulator and logs are issued for each monitored behavior and
collected in the host operating system. A text-based report is
generated after analysis has ended and provides a summary of

the execution. Additionally, two graphs are generated to
visualize the behavior of a sample, see Figures 2 and 3 for
examples.

On mobile phones, malware has been discovered that
listens for incoming SMS and forwards this information to the
attacker. In [25], TaintDroid was used to track sensitive data
originating from the phone’s database. DroidBox can extend
this approach by adding and modifying output channels
throughout the Android framework to detect leaks via outgoing
SMS and to disclose full details of the network communication,
not only in network leak scenarios.

The file AndroidManifest.xml, included in the Android
package, contains permissions that are needed for the
application to interact with the operating system, for example,
connecting to the Internet, sending SMS, making calls and
receiving incoming SMS. Applications that need to interact
with any resources must declare the appropriate permission in
the manifest file. It has been demonstrated that malicious
Android applications can circumvent the permission
policies[26] and [27], thus DroidBox compares each monitored
operation that requires any permission with the package’s
manifest file to check if any permission policy has been
bypassed.

Some malicious Android applications can evade anti-virus
software by performing obfuscation and changing themselves
during run-time [28]. Obfuscation may include cryptographic
functions applied to the data. DroidBox is designed to detect
applications as they invoke cryptographic keys or perform
encryption or decryption on the data

Malicious Android applications can perform phone calls or
send SMS to premium rate numbers that are declared by the

611

attacker. DroidBox can disclose these operations by listening to
API calls when SMS and calling methods are invoked by a
sample.

A. Treemaps
Treemaps[29] display a tree structured graph and its data as

nested rectangles. Each branch of the tree is assigned a
rectangle that is divided into smaller rectangles representing
sub-branches. The area of a rectangle is proportional to the
dimension of the data in the leaf node and each leaf node is
colored for visual clarity. The main motivation for the use of
treemaps is to provide a human visualization of tree-structures
that simplify the presentation of multi-dimensional data. The
authors of [30] used treemaps (and other graphs) in malware
analysis arguing that they “can effectively support a human
analyst” in detecting and classifying malicious behavior.

Figure 2 shows an example of a treemap generated for the
benign sample called Doodle.apk, that is the popular Doodle
Jump game; the cyan colored part represents the section
related to services that have been started, yellow part
represents file activity, in this case write operations and the
red part shows the network write operations. In general, the
wider a section becomes (horizontally), the more frequently
the corresponding operation is executed; the higher a section
rises (vertically), the more frequently the corresponding
operation has occurred within the section. The position of the
sections and operations are fixed, as well as the color (which
represents operation type).

F igure 2. An example of a Treemap Graph

B. Behavior Graph

The behavior graph produced by Droidbox describes the
temporal order of the operations. Figure 3 shows the output of
the sample doodle.apk that was executed for 60 seconds. On
the x- axis the time of the monitored operation is shown, while

the y-axis describes what kind of operation type was
monitored. This graph is generated by picking operations and
timestamps for each operation from the sandbox log and
plotting them.

F igure 3. An example of a Behavior Graph

V. EXPERIMENTAL RESULTS
In this section, we give the details of the two tests described in
Section III.

We observed that the majority of the malicious
applications in our dataset are games or applications intended
for changing the wallpaper. We also observed that during
execution of the two applications classified by Sophos as the
AdmSMS family, other operations were performed in the
background without the user’s knowledge. Figure 4 shows a
snapshot from the log file generated by this family; it appears
that the application sends SMS after 20 seconds from the start
of the execution. The log shows when the application tried to
send an SMS, what the message was and to which number it
was being sent. The malicious activity has messages sent to a
premium-rate number.

F igure 4. Snapshot of AdmSMS family log output

612

Naming of Malicious Families

In order to determine if existing anti-virus engines were
classifying Android-based malware accurately, we compared
the names assigned to the 33 samples in Table 1 by three
vendors: Sophos, TrendMicro and F-Secure and then
considered the Droidbox graphs for the samples to see if there
was support there for the assigned names. Table 2 gives the
raw output of the three AV vendor names along with the
decision of the research team based on Droidbox output.

As is evident from the data in the table, in many cases, the

AV vendors disagreed on the labels. We do not know how
long the AV vendors executed samples when trying to identify
them and different times may have been used. As mentioned
earlier in the paper, in our testing, we used one minute.
Differences in time of execution (and in the environment) may
account for the differences of opinion in the table.

Regarding the samples numbered 1a,b,c,d,e: the first three
all use the service and netwrite operations. Filewrite is also
used by 1a and 1c. However, 1d does not use service and
because of this, may not belong in the bridge family. 1e does
use service, but not netwrite; it does use filewrite, so it may be
bridge.

Now samples 3 (not classified by F-Secure), 4,5 and 6 all
use service and netwrite. Some, but not all, use netopen. While
the vote of the AV vendors F-Secure and TrendMicro identifies
them as DroidDream, both Sophos and our analysis identifies
them as PJapps. However, why is this not the same family as
bridge? (Sample 23 also uses service and netwrite and so could
be included in the bridge family.)

 There were also some difficulties with the families Gone
and RootCage. In comparing them, samples 7,8 and 9
(designated RootCage by Sophos and given other names by
the other vendors) all call netwrite twice and nothing else.
Gone 60 (10a) calls netwrite 3 times and open once while
10b,c, d and e all call netwrite exactly twice and have behavior
and treemap graphs that look exactly like those of the
RootCage samples.

 So as far as we can see, based on our behavior graphs,
seven of these samples are equivalent. Only one (10a) is
different. Thus, there may really be only one family here apart
from the single exception. We noticed also that 10b, c ,d and e
all appeared on the same date - 29/09/2011 while 10a appeared
on 23/09/2011. It may be the case that 10a was a trial version
that the malware author released on the market before
changing to the others. The five samples 10a, b,c,d and e are
shown in Figure 6.

 On a final note in the discussion of the Table 2 data, we
raise the question: should a sample only belong to a family
with SMS in the name if the graph includes SMS as an
operation? It may be the case that since we only run the

TABLE 2. Classification decisions

App
No.

F-Secure Trend-Micro Sophos Our decision

1a
BaseBridge.

A!mfb BRIDGE.AK
BBridge-F BBridge

1b
BaseBridge.

A BBRIDGE.M BBridge-E BBridge

1c
BaseBridge.

A BBRIDGE.A BBridge-E Bbridge

1d
BaseBridge.

A BRIDGE.B BBridge-A ??

1e
BaseBridge.

A BRIDGE.B BBridge-A Bbridge

2
DroidDream.

B
DORDRAE.

L PJApps-E ??

3
 DORDRAE.

N PJApps-E PJApps

4
DroidDream.

B
DORDRAE.

L PJApps-D PJApps

5
DroidDream.

B
DORDRAE.

L PJApps-D PJApps

6
DroidDream.

B
DORDRAE.

L PJApps-D PJApps

7
DroidRooter.

A LOTOOR.A
RootCage-

A gone or rootcage

8
DroidRooter.

A LOTOOR.A
RootCage-

A gone or rootcage

9
DroidRooter.

A LOTOOR.A
RootCage-

A gone or rootcage

10a GoneSixty.A
GONESIXT

Y.A Gone60-A Gone

10b GoneSixty.A
GONESIXT

Y.A Gone60-A gone or rootcage

10c
GoneSixty.A GONESIXT

Y.A Gone60-A gone or rootcage

10d
GoneSixty.A GONESIXT

Y.A Gone60-A gone or rootcage

10e
GoneSixty.A GONESIXT

Y.A Gone60-A
gone or rootcage

11 Jifake.A JIFAKE.E
SMSRep-

M
SMSRep or

JIFake

12 HippoSms.A
HIPPOSMS.

A SMSRep-D SMSRep
13 Lovetrap.A LUVTRAP.A MSRep-G ??
14 Kmin.A!mfb KMIN.SMA Kmin-C ??

15 Kmin.A!mfb KMIN.A
Andr/Kmin

-D ??
16 Kmin.A!mfb KMIN.SMA Kmin-C ??
17 Kmin.A!mfb KMIN.A Kmin-D ??

18
DroidKungF

u.A KUNGFU.B KongFu-A KongFu

19
DroidKungF

u.A GONFU.A KongFu-A KongFu

20
DroidKungF

u.A
DROIDKUN

GFU.B KongFu-B KongFu
21 Zsone.A!mfb CLICKER.A AdSMS-B AdSMS
22 AdSMS.A ADSMS.A AdSMS-A ??

23
Fakeplayer.B

!mfb
FAKEMOBI.

D FakPlay-C ??

24
Fakeplayer.B

!mfb FAKEP.A FakPlay-D ??

613

F igure 6. Combined Behavior Graphs for the Gone family (10)

application for 60 secs., a true ‘SMS’ type does not indicate
that it used the SMS operation because it was not run for
sufficiently long. However, we may need to run an application
for several hours or to have it run in a specific environment in
order to force it to reveal that it may eventually use SMS. This
affects numbers 11, 12, 13, 21, 22, 24.

The malicious application named com.Beauty.Girl-1 was
found by VirusTotal but was not identified by any of the three
AV vendors above as being in any family of Table 1. It is
described by Figure 7.

F igure 7. Treemap for com.Beauty.Girl-1

Based on the Droidbox graphs, we would place this sample

in the PJAppsfamily as it, along with samples 4, 5 and 6, uses
all of service, filewrite, netopen and netwrite. It may well be
possible to use our graph approach to identify many other
Android applications not yet identified by the AV vendors.

Broadcast Receivers

While executing malicious applications, we observed that
almost all of them listen to broadcast receivers such as
BOOT_COMPLETE, SEND_MESSAGE, SMS_RECEIVED
and OUTGOING_CALL whereas the benign set of
applications did not register any such receivers. The Android
system sends broadcasts to receivers as announcement for
events such as loss of battery power. Both benign and
malicious applications can also send broadcast messages as
‘intent messages’ to the system, for example, indicating that
applications are waiting for an event. Broadcast receiver
attackers can design their malicious application to listen for
incoming messages and forward them to predetermined or
premium numbers.

Zeus[31] is an example of such a malicious application; it
appeared in late 2011 and aims to steal online banking data by
spying on incoming messages. Once the device receives an
SMS, the application hiding inside it forwards it to a
predetermined number. Zitmo, a variant of Zeus, opens an
Internet connection upon capturing an SMS and forwards the
message via the network. Figure 8 shows a snapshot of the
Zitmo log.

F igure 8. Snapshot ofZitmo log output

Clean Applications

 In Section IIIA, we listed the clean applications that were
examined in our experiments. Even though these applications
were verified as being benign by VirusTotal, some of them we
deemed to be suspicious by virtue of the fact that they were
shown to leak information. A summary of the samples with
suspicious leaks follows:

CleanApp1: Writes IMEI to config file and leaks two times
the IMEI value via the network sink.
CleanApp2: Leaks IMEI and IMSI value in one HTTP GET
request.
CleanApp3: Writes IMEI to config file. Leaks IMEI twice in
an HTTP GET request to data.mobclix.com and leaks IMEL
together with other database values (OTHERDB) to
www.umeng.com.
CleanApp3 is the only application in our set that leaks with tag
OTHERDB, designating data originating from database URIs
that are not common; this data could be anything, even its own
application data. However, a clean file should not be calling
any logs or stored SMS. CleanApp1 and CleanApp3 have
very similar treemaps, however they connect to completely

614

different servers; while they appear to be benign, and they
violate privacy rules and misuse permissions. In future work,
we will look for and test such clean files more extensively to
determine why and how they leak data.

We were able to incorporate the ‘leak’ operation into the
generation of graphs and Figure 9 is a picture of the treemap
graph for CleanApp3 where the netleak is indicated in the top
right-hand bar.

F igure 9. Treemap of CleanApp3 showing a net leak.

Comparison with Other Work

To our knowledge, the current paper is the first paper to
examine malicious applications behavior using Droidbox. In
making the decision to work with Droidbox rather than
CWSandbox[32], for example, which was used in [30], we
relied on the work of Lantz in [7]. In that thesis, the sandbox
approach was transformed from the desktop platform to mobile
devices, and while many operations, such as file and network
activity, are common, SMS and phone activity as well as use of
the DexClassLoader are peculiar to the mobile operating
system and the library link operations are slightly different. In
addition, Droidbox has the advantage of being an open source
project, while we did not have access to the source code for any
other suitable sandbox environment.

 In [30], Trinius et al. consider a situation similar to ours,
but based in a wired computer environment rather than that of
mobile devices. Like us, they study techniques to visualize the
actions of malware with the aim of both detecting and
classifying it. Also like us, they use two means of
visualization, one with treemaps and the other with thread
graphs; we, on the other hand, use treemaps and behavior

graphs. As described in the previous section, treemaps use a
combination of colour and area in a rectangle to give a fast
visual representation of the type and number of API calls they
represent. Thread graphs present the chronological behavior of
a sample showing what actions were performed and when. The
authors of [30] use a combination of the treemap and thread
graph to provide them with a ‘behavioural fingerprint’ of a
sample.

We developed our behavior graph for the purpose of
replacing the thread graph, but using non-proprietary software.
Rather than visualize each individual thread, we gathered an
overview of the behavior. Operations and times were extracted
from the Droidboxsandbox logs and plotted using Python
Matlab libraries[33]. This gave us access to the same type of
visualisation information available to Trinius et al. in[30]. In
experimentation, they use a set of 2,000 computer malware
samples pre-classified unanimously by six major anti-virus
softwares into 13 families. They executed the samples in a
sandbox environment for two minutes and used the two types
of visualization methods to consider the similarities and
differences. In many cases they were able to distinguish
between families based on these graphs, and also show that
members of the same pre-classified family had similar graphs.
They state (Section 5): “The images of different malware
samples are visually different, but samples of the same
malware are almost identical. Nevertheless, this does not apply
for all classes. Since the results of behavior-based analysis
depends on several variables which are beyond the analyst’s
control (e.g., in case the command and control server of a bot is
unreachable, the bot will show an entirely different behavior) a
perfect clustering seems infeasible.” Thus, the authors of [30]
come to a conclusion similar to ours, however, based on a
much larger dataset.

In considering the differences in data used, we point out
that the malware used by Trinius et al. [30] were executables
captured by a honeypot in 2009. Thus, they are single files
several years in age, and classical anti-virus technology has had
the time to agree on correct family labels for them. In the case
of the data used in the current paper, we are using twenty-three
very recent (all dated 2011) malicious applications (containing
several files and folders rather than single executables) which
target the mobile phone environment.

VI. DISCUSSION AND FUTURE WORK
We compared family identification by three major anti-

virus vendors with results of Droidbox and were able to find
support for the argument that these vendors were in some cases
incorrect. We demonstrated that while applications may be
classed as benign by these same vendors, some could
nevertheless be leaking data and so be prone to easy misuse by
malware writers.

We have demonstrated that Droidbox can be a very useful
tool both in classifying malicious Android applications and in
determining weaknesses in benign Android applications. Some
of the limitations of DroidBox are that it only monitors
operations performed within the Android framework. Thus, any
native code could potentially leak data that goes unnoticed.

615

Another obstacle is that when running the analysis, some of
the malicious behavior is hidden and only triggered on certain
events, such as on incoming SMS. Since we do not interact
with the sample during analysis, such hidden behavior is not
viewed in the results. Additionally, all samples were executed
for the same length of time, while malicious activity can be
triggered at varying times in different samples. However, these
are common problems with all experiments run in a
standardized environment.

In our future work, we will examine Android application
family classification more extensively and also investigate the
implications of data leakages in benign applications. We will
also extend DroidBox to provide more detailed API
monitoring. Broadcast receivers and their role in identifying
malicious applications will also be part of our future
investigations.

[13] É. Payet and F. Spoto, "Static Analysis of Android Programs Automated

Deduction." vol. 6803, N. Bjørner and V. Sofronie-Stokkermans, Eds.,
ed: Springer Berlin / Heidelberg, 2011, pp. 439-445.

[14] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, "Crowdroid: behavior-
based malware detection system for Android," in proceeding the 1st
ACM workshop on Security and privacy in smartphones and mobile
devices, Chicago, USA, 2011, pp. 15-26.

[15] Bla, x, T. sing, L. Batyuk, A. D. Schmidt, S. A. Camtepe, and S.
Albayrak, "An Android Application Sandbox system for suspicious
software detection," presented at the 5th International Conference on
Malicious and Unwanted Software (MALWARE), Nancy, Lorraine
2010.

[16] Android. (2011, Dec 26). Android Monkey tool, . Available:
http://developer.android.com/guide/developing/tools/monkey.html,

[17] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, and
Ahmad-Reza Sadeghi, "XManDroid: A New Android Evolution to
Mitigate Privilege Escalation Attacks," Technical Report, Technische
Universit Darmstadt2011.

[18] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, "Paranoid
Android: versatile protection for smartphones," in 'Proceedings of the
26th Annual Computer Security Applications Conference', Austin, Texas,
2010, pp. 347-356.

[19] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and C. Glezer,
"Google Android: A Comprehensive Security Assessment," Security &
Privacy, IEEE, vol. 8, pp. 35-44, 2010.

[20] Mila. (2011, Nov 1). Mobile Malware Sample. Available:
http://contagiominidump.blogspot.com/

[21] A. Satoh and T. Inoue, "ASIC-hardware-focused comparison for hash
functions MD5, RIPEMD-160, and SHS," Integration, the VLSI Journal,
vol. 40, pp. 3-10, 2007.

[22] Veelasha Moonsamy, Ronghua Tian, and L. Batten, "Feature Reduction
to Speed up Malware Classification," in the 16th Nordic Conference in
Secure IT Systems (NordSec), Springer Berlin / Heidelberg, 2012, pp.
176-188.

[23] M. Alazab, A. Alazab, and L. Batten, "Smartphone Malware Based On
Synchronization Vulnerabilities," in proceeding of the 7th conference on
Information Technology and Applications (ICITA), Sydney, Australia,
2011.

[24] P. lantz. (2011). Project 5 - DroidBox: An Android Application Sandbox
for Dynamic Analysis. Available: http://www.honeynet.org/gsoc/slot5

[25] William Enck, Peter Gilbert, Byung-gon Chun, Landon P. Cox, Jaeyeon
Jung, Patrick McDaniel, and A. N. Sheth, "TaintDroid: An Information-
Flow Tracking System for Realtime Privacy Monitoring on
Smartphones," in proceeding of the 9th USENIX Symposium on
Operating Systems Design and Implementation (OSDI '10), Vancouver,
Canada 2010.

[26] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, "Privilege
Escalation Attacks on Android Information Security." vol. 6531, M.
Burmester, G. Tsudik, S. Magliveras, and I. Ilic, Eds., ed: Springer
Berlin / Heidelberg, 2011, pp. 346-360.

[27] A. Lineberry, D. L. Richardson, and T. Wyatt. (2010, Dec 29). THESE
AREN’T THE PERMISSIONS YOU’RE LOOKING FOR. Available:
http://dtors.files.wordpress.com/2010/09/blackhat-2010-final.pdf

[28] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss,
"“Andromaly”: a behavioral malware detection framework for android
devices," Journal of Intelligent Information Systems, pp. 1-30, 2011.

[29] B. Shneiderman. (2009, Oct 25). Treemaps for space-constrained
visualization of hierarchies. Available:
http://www.cs.umd.edu/hcil/treemap-history/

[30] P. Trinius, T. Holz, J. Gobel, and F. C. Freiling, "Visual analysis of
malware behavior using treemaps and thread graphs," in prcoeeding of
the 6th International Workshop on Visualization for Cyber Security
Atlantic City, NJ 2009, pp. 33-38.

[31] Kaspersky. (2011, Dec 15). ZeuS-in-the-Mobile for Android. Available:
http://www.securelist.com/en/blog/208193029/ZeuS_in_the_Mobile_for
_Android

[32] C. Willems, T. Holz, and F. Freiling, "Toward Automated Dynamic
Malware Analysis Using CWSandbox," IEEE Security and Privacy, vol.
5, pp. 32-39, 2007.

[33] John Hunter and D. Dale. (2007). Matplotlib. Available:
http://matplotlib.sourceforge.net/

REFERENCES

[1] Braden. (2011, Dec 1). Google’s Android Market Reaches

400,000 Applications. Available:
http://www.ijailbreak.com/applications/googles-android-market-
reaches-400000-apps/

[2] M. Alazab, S. Venkataraman, and P. Watters, "Towards
Understanding Malware Behaviour by the Extraction of API
Calls," in The second Cybercrime and Trustworthy Computing
Workshop, Ballarat, Vic, 2010, pp. 52-59

[3] Ammar Alazab, Moutaz Alazab, Jemal Abawajy, and M. Hobbs,
"Web Application Protection against SQL Injection Attack," in
7th conference on Information Technology and Applications
(ICITA 2011), Sydney, Australia, 2011.

[4] M.Alazab, P.Watters, S.Venkatraman, M.Alazab, and A. Alazab,
"Cybercrime: Current Trends of Malware Threats," presented at
the International Conference on Democracy, CCIS series from
Springer, Thessaloniki, Greece., 2011.

[5] C. Hsiu-Sen and T. Woei-Jiunn, "Mobile Malware Behavioral
Analysis and Preventive Strategy Using Ontology," presented at
the Conference on Social Computing (SocialCom), 2010.

[6] M. Alazab, S. Venkatraman, P. Watters, and M. Alazab, "Zero-
day Malware Detection based on Supervised Learning
Algorithms of API call Signatures," in Ninth Australasian Data
Mining Conference: AusDM 2011, Ballarat, Vic, 2011, pp. 171 -
181.

[7] P. Lantz, "An Android Application Sandbox for Dynamic
Analysis," Master, lectrical and Information Technology, Lund
university, . Lund, Sweden, 2011.

[8] L. M. Security. (2011, Dec 27). 'Lookout Mobile Threat Report'.
Available: https://www.mylookout.com/_downloads/lookout-
mobile-threat-report-2011.pdf

[9] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, "A
survey of mobile malware in the wild," in Proceedings of the 1st
ACM workshop on Security and privacy in smartphones and
mobile devices, Chicago, Illinois, USA, 2011, pp. 3-14.

[10] Y. Zhou, X. Zhang, X. Jiang, and V. Freeh, "Taming
Information-Stealing Smartphone Applications (on Android), In
Trust and Trustworthy Computing." vol. 6740, J. McCune, B.
Balacheff, A. Perrig, A.-R. Sadeghi, A. Sasse, and Y. Beres,
Eds., ed: Springer Berlin / Heidelberg, 2011, pp. 93-107.

[11] F. Di Cerbo, A. Girardello, F. Michahelles, and S. Voronkova,
"Detection of Malicious Applications on Android OS." vol. 6540,
H. Sako, K. Franke, and S. Saitoh, Eds., ed: 'Computational
Forensics' Springer Berlin / Heidelberg, 2011, pp. 138-149.

[12] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, "Android
permissions demystified," in proceedings the 18th ACM
conference on Computer and communications security, Chicago,
Illinois, USA, 2011, pp. 627-638.

616

