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Abstract The growing popularity of smartphone devices has led to development of
increasing numbers of applications which have subsequently become targets for
malicious authors. Analysing applications in order to identify malicious ones is a
current major concern in information security; an additional problem connected
with smart-phone applications is that their many advertising libraries can lead to
loss of personal information. In this paper, we relate the current methods of
detecting malware on smartphone devices and discuss the problems caused by
malware as well as advertising.
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1 Introduction

Although many operating systems offer applications (APPs), most are not open
source. In this paper, we focus on Android as it is an open source system and
therefore easier to test than a proprietary system. None-the-less, much of the dis-
cussion here applies to other operating systems too, including iOS, Blackberry and
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Windows. APPs can be a great source of convenience, but they also bring problems
connected with malicious code as well as data theft. We shall consider both of these
aspects in this paper.

Android applications are available to users as a zipped file, identified as the
Android application package, or APK file, which contains classes.dex, assets,
library and resource files along with the AndroidManifest.xml which is a config-
uration file containing the list of permissions and the application’s components
including activities, services, intent receivers, and content provider, layout data and
the application resources. The executable code for the APP resides in classes.dex
and in the library file. In particular, the classes.dex file contains all the Java classes
compiled to Dalvik Byte code. (For more details see for example http://developer.
android.com/sdk/installing/studio-build.html).

The Android permission system is used to protect a smartphone’s resources (see
http://developer.android.com/guide/topics/security/permissions.html). Each appli-
cation declares a list of permissions needed to protect access to resources (for
example ‘permission to access the Internet’ is a common one). While the permis-
sion system helps prevent the intrusion of malware, it is not designed to detect
malicious applications. In fact, several research papers have shown that some
applications with no permissions at all can still access the operating system [1].
Brodeur [2] developed a no-permission application that gathers user information
and forwards it to a pre-selected server, while the authors of [3] demonstrate a
no-permission application that can reboot an Android device. Moreover, several
papers (for example [4] and its references) consider the risk of over-privileged
applications which request permissions that are not required for the application to
execute. Hence, analysing such applications based on only the requested permis-
sions can bias the analysis results.

Malware detection is an emerging topic in the study of the Android platform
which relies heavily on its permission system to control access to restricted system
resources and private information stored on the smartphone. However, there is no
evidence providing a clear understanding of the key differences for permissions
between clean and malicious applications.

Mobile phones provide tracking services for several reasons, both for conve-
nience in assisting a person to find a location and in order to offer services such as
information about a favourite restaurant which is nearby: so location identification
can offer assistance with directions to a target destination and also in indicating
facilities along the way. However, several publications (e.g. [5]) have been able to
show that sensitive information, such as device ID and user location, is often leaked
via advertising libraries.

In this paper, we present some of the recent work on malware detection on
Android APPs and also on ‘data leaks’ from APPs; this latter refers to information
taken from the smartphone without the knowledge of the user. Section 2 looks at
malware while Sect. 3 considers leaky APPs. In Sect. 4, we describe what is
generally required in setting up experiments and tests on APPs. This is followed by
a brief summary and then references.
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2 Malware

In addition to permissions, a second security mechanism for smartphones is tra-
ditional anti-malware analysis, which uses a pattern matching technique to identify
malicious applications based on a byte-string that is unique to an application.
Recent research work, for example [6], points out that such a signature is comprised
of a package or file name that can be matched against an anti-malware database.
Nevertheless, work by [7] and others, confirms that malicious applications can
evade the current protection mechanisms by using one or more of the following
techniques: null operation (NOP) insertion, arithmetic and branch insertion, Java
reflection, Byte code encryption, Junk Code Insertion, payload encryption, native
exploits or changing the package name. While the pattern matching technique is
popular with anti-malware companies due to the high accuracy with which it
identifies malicious applications in real time and with low run time, it has been
shown to be ineffective in detecting sophisticated malware. According to a study
conducted on ten anti-malware applications for Android [6], none of the evaluated
applications is resistant against malware transformation techniques including
poly-morphism, obfuscation and anti-reversing attacks.

A different approach to identifying malicious applications has been to leverage
information from system calls dynamically. However, the authors of [8] argue that
monitoring and intercepting system calls is inefficient in Android because system
calls are basic interfaces provided by an operating system, and they are the only
entrance to kernel mode from user mode; nevertheless, some malware do not
necessarily make use of the system call interface and so can evade this analysis
method [9]. A second problem is that it is difficult to identify behaviour with system
calls. Thirdly, monitoring and intercepting system calls in real Android devices is
not possible, as the kernel of such a device cannot use loadable kernel modules. In
the literature, techniques used to identify malicious applications include
permission-based detection, signature-based detection and system calls-based
detection. There have even been attempts to apply machine learning algorithms
on the smartphone devices. Some of these algorithms are mentioned below and
more information about them can be found in [10].

Google deploys an automated system, known as “Bouncer” to test uploaded
applications for malicious code. Once a developer has uploaded an application to
the Google market, Bouncer compares uploaded applications with known malware
and then runs the uploaded application in a virtual environment in order to identify
any potential malicious behaviour. Nevertheless, some malicious applications tar-
geting the Android market can evade Bouncer according to a report published by
TrendMicro in 2012 [11].

A study by Amamra et al. [12] investigated the effectiveness of machine learning
classifiers in detecting malware. The authors collected a dataset of 100 free
applications from the Android market and 90 malicious applications from the
Contagio mobile dump. They focused on leveraging information from system calls
to identify malicious applications, and initially evaluated their framework using the
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following algorithms: Logistic Regression, support vector machine (SVM), artifi-
cial Neural Network and Naive Bayes. They achieved 92.5 % detection accuracy
with an 8.5 % false positive rate using the SVM classifier.

Zhao et al. [13] developed a tool they call RobotDroid to detect smartphone
malware during runtime. RobotDroid logs the intent issued and system resources
accessed by applications; it then categorizes the logs and sorts them based on the
timestamp. Their tool employs the SVM classifier to find those support vectors
which are best able to identify malicious applications. The tool was tested using
three malware families, lGeinimi, DroidDream and Plankton, and obtained 93.3, 90
and 90 % detection accuracy respectively.

Sahs and Khan in [14] collected a dataset of 2081 benign applications and 91
malicious applications and extracted permissions and Control Flow Graphs using
Androguard to train a classification SVM. The authors mention (Section VII) that
their system is limited to just permission and control flow graphs, and that other
information-rich features can be extracted from the code itself, including constant
declarations and method names.

Aung and Zawi [15] applied machine learning algorithms to the information
retrieved from permissions and events. The authors applied information gain [16]
on the given features in order to improve the detection accuracy and efficiency. In
order to test their methodology, they included 3 machine learning algorithms: J48,
Random Forest and CART, and obtained 89.36, 91.67 and 87.88 % accuracy
respectively.

Amos et al., the authors of [17], developed a framework called STREAM to
enable large-scale validation of mobile malware machine learning classifiers. They
extract information using dynamic analysis about the battery, binder, memory,
network, and permissions from a dataset of 408 benign applications and 1330
malicious applications. For the purpose of testing their framework, they include 6
machine learning algorithms: Random Forest, Naive Bayes, Multilayer Perceptron,
Bayes net, Logistic and J48, and obtained 70.31, 78.91, 70.31, 81.25, 68.75 and
73.4 % detection accuracy respectively.

In [18], the authors are the first to examine behaviour in malicious applications
using DroidBox. Using a dataset comprising samples that were collected from
publicly available sources, each malicious application is executed for 60 s in a
sandboxed environment and the log files generated are collected at the end of
execution. Droidbox also generated two types of graphs (behaviour graphs and
treemap graphs) for each sample. Both graphs helped the authors analyze the
activities performed during run-time and also assisted in establishing patterns
between variants from the same malware family. These graphs illustrate how some
benign applications might leak data connected to short message service
(SMS) texting and other features of the applications. The authors note that, while
one would expect to see encrypted code in malware, not a single malicious
application in their (small) sample set invoked a cryptographic activity, while
several of the clean APPs did so.
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Finally, it is worth noting that according to the authors of [19, 20], the detection
accuracy and efficiency of any machine learning system are influenced by three
main factors: the features used to represent the instances; the algorithm used to
generate the classifier; and the parameter values of a classifier.

3 Applications Which Leak Data

3.1 Malware and APPs

Our 2012 paper [18] explains that the Android applications market has been
infected by numerous malicious applications and that rogue developers are injecting
malware into legitimate market applications which are then installed on open source
sites accessible to consumers. We thus consider the situation of malware à propos
APPs in this sub-section.

In [18], we demonstrated that Droidbox [21] can be a useful tool both in clas-
sifying malicious Android applications and in determining weaknesses in benign
Android applications; weaknesses include the leaking of private data caused by
such functionalities as location services and advertising and we consider these in
the next sub-section. DroidBox can track sensitive data originating from the
phone’s database and add and modify output channels to detect leaks via outgoing
SMS and to disclose full details of the network communication. Android applica-
tions can perform phone calls or send SMS to premium rate numbers that are
declared by the attacker. DroidBox can disclose these operations, and is able to
track sensitive data originating from the phone’s database and detect leaks via
outgoing SMS as well as disclose full details of the network communication.

Some malicious Android applications can evade anti-virus software by per-
forming obfuscation and changing themselves during run-time [15]. DroidBox is
designed to detect applications which attempt obfuscation by using cryptographic
keys to encrypt or decrypt data; however, as noted at the end of the previous
section, the use of cryptography is not necessarily an indication that an APP is
malicious.

3.2 Tracking Services

We turn to a discussion of two types of tracking features for smartphones; these are:
(i) Location Services and (ii) Advertising. For (i), smartphone owners can either
turn on or turn off location tracking to prevent installed applications from discov-
ering their physical locations. As for advertising, users are allowed to either turn on
or ‘limit’ tracking by advertising libraries embedded in applications.
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The Android permission-based model is used to restrict access to privileged
system resources and to a user’s private information. This is achieved by requiring
the user to grant access to all permissions requested by the application in order for it
to be successfully installed. Consequently, any advertising libraries embedded in an
APP receive the same privileges as the APP that requested the permissions.

Pearce et al. [4] proposed a framework that can separate an advertising library
from its main application. They introduced a new Application Programming
Interface (API) as well as two additional permissions and applied a method known
as privilege separation, which extracts the advertising component from the main
functionality component of the application; this ensures that the advertising library
does not inherit the same permissions assigned to its home APP. In [22], Shekhar
et al. presented their method for separating applications and advertisements in the
Android platform: a framework that can take as input an APP with embedded
libraries and rewrite it so that the main functionality of the APP and the advertising
libraries run as different processes. The authors also verified that, in the rewritten
version of the APP, all the permissions requested by it were indeed required for the
APP to function properly.

Stevens et al., in [23], performed a thorough analysis of third party advertising
libraries to understand if they are unnecessarily accessing private information stored
on users’ smartphones. Additionally, the authors presented several vulnerabilities
that attackers can exploit whilst being connected on the same network as the victim.
Grace et al. [24] observed that some third-party advertising libraries employ unsafe
mechanisms to retrieve and execute code from the Internet. Such behaviour renders
a user’s private information vulnerable to external attacks that can be carried out via
the Internet.

The authors of [25] investigated tracking services on the Android and iOS
smartphone platforms and described a simple and effective way to monitor traffic
generated by tracking services to and from the smartphone and external servers. As
part of the testing, they dynamically executed a set of Android and iOS applica-
tions, collected from their respective official markets. Their results indicate that
even if the user disables or limits tracking services on the smartphone, applications
can by-pass those settings and, consequently, leak private information to external
parties. On the other hand, when testing the location ‘on’ setting, the authors notice
that generally location is not tracked.

Two of the authors of [25] collaborated with additional researchers to investigate
the same problem on other smartphone operating systems [26]. Using the experi-
mental software platform Mallory, which was also used in [25], the authors
investigated the ‘tracking off’ settings on the Blackberry 10 and Windows Phone 8
platforms in a manner similar to that used for Android and iOS and with similar
results. The conclusion is that tracking settings on all four smartphone operating
systems Android, iOS, Blackberry and Windows cannot be trusted to operate as
proposed.
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4 Experimental Work

In this section, we give a general explanation of how APP samples can be collected
and tested for malware and for leaks. Any APP should first be tested to determine
whether it is benign or malicious; this can be done using an existing free online
service, as described in the next sub-section. The existence of this service also
permits us to define malicious and clean APPs rigorously.

4.1 VirusTotal

VirusTotal (https://www.virustotal.com/), a subsidiary of Google, is a free online
service that analyzes files and URLs enabling the identification of viruses, worms,
trojans and other kinds of malicious content detected by antivirus engines and
website scanners. It may also be used to detect false positives, that is, benign code
detected as malicious by one or more scanners.

VirusTotal stores a list of identifiers (signatures) of known malware, which are
contributed by many antivirus companies; this list is updated about every 15 min as
signatures are being developed and distributed by antivirus companies. An APP can
be uploaded onto their website where scanning is done via API queries to the
approximately 50 different companies providing VirusTotal with information.

We define a malicious APP as one which is identified to be so by at least one of
VirusTotal’s antivirus products. We define a clean or benign APP to be one not
identified as malicious by any of the VirusTotal antivirus products.

4.2 Setting up the Testing Environment

This section describes the experimental setup for most of the work done by the
authors in the various publications [2, 7, 19–22, 26].

Smartphone malicious applications can be collected from several open source
sites such as Contagion, Offensive and VXHeavens, while benign applications can
be chosen from obvious sources such as: adobe_flash_player, official APP markets,
antivirus, facebook, googlemaps, mobi and youtubedownloader. In all cases APPs
should be checked by VirusTotal as described above.

For all of our testing, we used Windows supported by Linux and set up a virtual
machine environment to separate the application from the network as mobile
malware can be spread from mobile device to PC and vice versa.

In order to identify APPs and detect any changes during the testing, we used
HashMyFiles installed in the Windows host to generate a unique identifying hash
value. In doing dynamic testing (that is, executing the application to determine what
it does), a decision about the running time has to be made. With a small set of
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samples, a tester may be able to allocate a longer time to each sample than available
when using a large set. Whatever the time chosen, if the APP is designed to behave
in a malicious way after the allocated run time has expired, this behaviour will not
be detected in the testing.

4.3 Performance Evaluation

The standard measure of success in machine learning is the overall accuracy [27],
which is defined as the percentage of all applications classified correctly. Research
papers studying malware usually work with multi-classes in which each category
has many more benign than malicious applications. In this (imbalanced) case, the
accuracy measure may not be an adequate performance metric [28]. For example, if
a classifier correctly identifies the entire dataset as benign, the classifier achieves
high accuracy results while failing to detect the malicious applications.

In order to adequately reflect categorization performance, there are more accu-
rate metrics that can be used in imbalanced cases, including ‘recall’ and ‘precision’,
which can be combined into ‘F-measure’ [29, 30]. These metrics would normally be
calculated on each class separately and then combined together to provide a
weighted average.

5 Summary

Advertising has developed as the solution to the lack of a business model associated
with the provision of free APPS for smartphones, as it allows application developers
to offer free applications to the public while still earning revenue from
in-application advertisements. Although location services are primarily used for
purposes related to navigation, advertising companies tend to exploit this func-
tionality in order to increase their revenue. Thus, advertising is unlikely to disap-
pear from smartphones in the near future.

In this paper, we have explained how malware can be installed on APPs offered
through the unofficial APP markets, and subsequently downloaded on to many
smartphones with results such as theft of user identity and contacts, and fraudulent
use of the smartphone for expensive calls. We have also explained how advertising
can be used to capture and track user identity.

Based on these observations, the authors of [25] suggest the following (para-
phrased) recommendations for three relevant parties:

1. Novice Smartphone Users. Download applications only from the official mar-
kets as they are less likely to be malicious than APPs from unofficial markets.
While one cannot guarantee that all applications found on official markets are
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clean, there is always a chance for any malicious applications to be deleted from
the market when reported to the designated authorities.

2. Device Manufacturers. Smart-device manufacturers can provide users with
pre-installed applications so that they have more control of their private infor-
mation, instead of relying on the smartphone operating system.

3. Academia/Industry. Researchers from academia and industry within the field
form an open-source research community to develop open-source applications
that will help to compensate for the security vulnerabilities found in existing
applications offered by the official application markets.
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