

A Comparison of the Classification of Disparate
Malware Collected in Different Time Periods

1Rafiqul Islam, 2Ronghua Tian, 2Veelasha Moonsamy, 2Lynn Batten

1School of Computing and Mathematics, Charles Sturt University, Australia.
2School of Information Technology, Deakin University, Melbourne, Australia

(mislam@csu.edu.au, tianronghua99@gmail.com, (v.moonsamy, lmbatten)@deakin.edu.au

Abstract- It has been argued that an anti-virus strategy
based on malware collected at a certain date, will not work
at a later date because malware evolves rapidly and an anti-
virus engine is then faced with a completely new type of
executable not as amenable to detection as the first was.

In this paper, we test this idea by collecting two sets of
malware, the first from 2002 to 2007, the second from 2009
to 2010 to determine how well the anti-virus strategy we
developed based on the earlier set [18] will do on the later
set. This anti-virus strategy integrates dynamic and static
features extracted from the executables to classify malware
by distinguishing between families. We also perform
another test, to investigate the same idea whereby we
accumulate all the malware executables in the old and new
dataset, separately, and apply a malware versus cleanware
classification.

The resulting classification accuracies are very close for
both datasets, with a difference of approximately 5.4% for
both experiments, the older malware being more accurately
classified than the newer malware. This leads us to
conjecture that current anti-virus strategies can indeed be
modified to deal effectively with new malware.

Index Terms - malware, classification, static, dynamic.

I. INTRODUCTION

With the growth of the shadow Internet economy,
malware is no longer simply used to damage, break or
intrude on computer network systems, but now exists
primarily as one of the important means used by
criminals to make a profit. Malware has already become a
global problem which has affected different parts of the
world in different ways. The upsurge in the number of new
samples collected by the anti-virus companies over the last
few decades [4] clearly justifies the need for continuous
deep analysis of malicious files in order to improve the
efficacy of anti-virus software. So far, the researchers
contributing within the malware field are unable to find an
efficient detection approach which is capable of classifying
malware and differentiating between malware and cleanware
over a long period of time, as explained below.

The work in [15, 21, 13, 2, 1, 19, 14, 9] supports the
argument that an anti-virus strategy which has been
successful in a given time period will not work at a much
later date; this, they argue, is due to changes in malware
design which evolves with time and eventually becomes
unrecognizable from the original form. Their work indicates
that current techniques failed to find a distinctive pattern of

malicious software which can be used to identify future
malware with the level of accuracy required.

Despite the strong support in the literature for the idea
that current detection methods will not easily detect
future malware, in this paper, we demonstrate that it is
possible to develop a malware detection strategy which
maintains stable performance over an extended time
period. We do so by considering two sets of malware, one
collected during the period 2002 to 2007 (881 samples)
and the other during the period 2009 to 2010 (1517
samples). All samples come from CA Technologies VET
Zoo (www.ca.com) and all have been pre-classified as
members of particular families. The key contribution of
this paper is the provision of strong evidence that anti-
virus techniques which work well on malware developed
at a certain time may continue to be effective on malware
developed at a much later time.

We do two different experiments in this paper to test
our idea;

i) One for malware family classification to observe
the results of two different time periods and

ii) The other for malware versus cleanware
classification using a cumulative approach to
observe the consistent performance of malware
over time within the two different time periods.

The rest of the paper is organized as follows: Section
2 includes a summary of the related work on comparison
of malware classification over a time period. In Section 3
we elaborate on the data preparation while Section 4
describes the classification process. Section 5 provides an
analysis of the results and lastly, in Section 6 we discuss
these results and present some ideas for future work.

II. RELATED WORK

In this section, we review the literature on malware
detection and classification which has emphasized a
comparison of results over a time period.

More and more malware writers use various
obfuscation technologies such as packing, encrypting or
polymorphisms, to transform a malicious program into
variants so that the latter cannot be detected by anti-virus
detection engines. In practice, there is no system that can
achieve 100% classification accuracy. Some researchers
have achieved quite good results by testing different
approaches on various data sets. We discuss some of
these here.

946 JOURNAL OF NETWORKS, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER
doi:10.4304/jnw.7.6.946-955

Bailey et al. [1] describe malware behaviour in terms
of system state changes (taken from event logs). They
compare over 3000 pre-classified samples with over 3000
unclassified samples using a clustering technique to
measure closeness. Testing about 8,000 malware samples
collected over the period 2004 to 2007, they achieve an
overall classification accuracy of almost 92%. In their
study they use three different evaluation techniques:
completeness, conciseness, and consistency. The authors
mention that one limitation of their methodology is the
failure to “detect fine-grained characteristics of the
observed behaviours”.

Zheng and Fang [20] propose a novel infrastructure for
malware detection that can be implemented in a cloud
system thus relieving a local end system of strenuous
processing of suspicious files. They compare detection
rates on malware sets which differ in age by up to 3
months, with diminishing levels of accuracy.

The authors of [6] use a combination of static and
dynamic analysis to achieve a high level of malware
accuracy (97%) over an eight year time period,
demonstrating that including ‘older’ malware in the set
for feature selection can assist in identifying ‘new’
malware.

The work of Roundy and Miller [12] showed that by
applying a hybrid of dynamic and static analysis, the
probability of correctly detecting malicious programs can
be significantly increased. They incorporate static and
dynamic methods to complement each other to make the
detection and classification effective and robust to
changes in malware evolution. The combined algorithm
provides “analysis-guided instrumentation on obfuscated,
packed and self-modifying binaries” [12, p.335]. The
authors tested their algorithm on 200 malware sample and
found that 33% of the malicious code analysed by the
combined methods were not part of the dynamic
execution trace reports and would not have been
identified by dynamic analysis alone.

The study in [18] investigates malicious attacks on
several websites by creating web honeypots and
collecting 366 website-based malware executables over a
period of five months. In their study, they carry out two
investigations: (i) collect and analyse malware samples
using 6 different anti-virus programs, and (ii) conduct the
same experiment four months later using the updated
versions of the 6 programs to determine their efficacy.
The authors categorize the 366 malware samples under
four types of malware: strings generator (110 samples),
information investigator (191 samples), downloader (2
samples) and bot generator (63 samples). In the first
investigation, the group of anti-virus programs detected
only 3% and 13% of the first and fourth types of malware
respectively. The second and third types of malware went
undetected. In the second investigation, the detection
rates improved to the extent that one anti-virus program
successfully detected 74% of the malware from the
dataset, but the detection percentages for the rest of the
anti-virus software were under 50%. This work
demonstrates that, with training on older malware, some

anti-virus software can improve detection rates
significantly.

The research conducted by Rosyid et al. [11] is
focused on detecting malicious attack patterns in botnets.
They use a set of sequential attacks which was recorded
by a honeypot during the year 2009. The log files include
the sequences of malware occurring in a particular time
slot, where the duration of one slot is 20 minutes and the
average number of slots in one day is 72. After extracting
the malware sequences, they then apply the PrefixSpan
algorithm to discover subsequence patterns. The authors
extend their work by identifying attack patterns based on
IP address and timestamp; this allows the authors to track
the IP addresses and to determine the source and
distribution pattern of the malware. Finally, the strength
of a sequential attack pattern is represented by a
confidence value. The highest confidence values for 2-
pattern and 3-pattern are on average less than 50% and
57.93% respectively. The authors argue, therefore, that
the signature of a single malware file is not enough to
detect the complex variants of the attacks by botnets.

Another group of researchers [8], build their malware
detection and classification framework based on
comparisons of extracted strings using static analysis.
The authors suggest a malware detection and
classification system using the method of comparing
different character strings, which in turn is used to
identify and determine whether two instances are
variants. The authors present a three-step methodology
of extraction, refinement and comparison. In the
extraction stage, all the printable strings existing in
binary files are collected. The strings are then passed on
to the refinement phase where the misleading characters
that might affect the classification process are eliminated.
The authors choose a set of 100 malware files to
determine the type of characters to be discarded and
apply the results to a set of 10,000 previously identified
malware samples which were collected over several
months. In the comparison phase, a modified Jaro-
Wrinkler Distance [3] formula is used to measure the
number of similar character strings between two different
string groups and then, the Edit distance [3] formula is
used to determine the similarity between two different
character strings. The authors conclude that it is
necessary to connect various static analysis methods in
parallel, and in some cases, consider the need for the
interlocking of a dynamic analysis method to create a
more accurate, generalized system.

In [10], the authors study the resulting arms race
between detection and evasion from the point of view of
Google’s Safe Browsing infrastructure, an operational
web-malware detection system that serves hundreds of
millions of users. Their study focuses on the four most
prevalent detection techniques: Virtual Machine
honeypots, Browser Emulation honeypots, Classification
based on Domain Reputation, and Anti-Virus Engines.
The analysis is based on the data collected over a four
year period. They propose and verify the hypothesis that
malware authors continue to pursue delivery mechanisms
that can confuse malware detection systems. Their results

JOURNAL OF NETWORKS, VOL. 7, NO. 6, JUNE 2012 947

© 2012 ACADEMY PUBLISHER

show that none of the four detection techniques
mentioned above are effective in isolation, but that
adopting a multi-pronged approach can improve detection
rates.

III. DATA PREPARATION

In this section we provide a detailed explanation of the
experiment. Section A describes the datasets that are
used; Section B introduces our feature extraction method.

A. Datasets

The date used for each malware sample was the date
assigned to the malware as it was received by CA
Technologies VET Zoo. It is of interest to note that
within the total of 2398 malware files, no family is
represented in both Old and New Datasets. This was not
done intentionally but is a true representation of the data
in the Zoo.

In our experiment, we use the term ‘Old Dataset’ to
refer to the malicious files collected between 2002 and
2007 and the term ‘New Dataset’ for those collected
between 2009 and 2010. Under this section, we explain
the data set preparation process for our two different
tests: (i) Family by Family and (ii) Cumulative approach.

Family by Family (F/F) Malware Classification Test

Tables I and II list the families in the Old and New

Datasets respectively, along with the numbers of files per
family. The date used was the date assigned to the
malware as it was received by CA Technologies VET
Zoo.

Cumulative Cleanware versus Malware Test

For the second test, we accumulate the malware
executables within the old and new datasets separately
and carry out a malware versus cleanware classification.

The number of clean files used in our experiment is
541 and all are Win32 based executables.

Figure I shows the number of malware collected by
month for the years 2002-2007. Figure II depicts the
cumulative graph of the malware executables collected
each month for the period 2002-2007. To generate the
first malware group MG1, we take the earliest-dated 10%
of the malware executables which comprises 90

executables and includes the period October 2002 to
March 2004. The second data group MG2 contains the
executables from October 2002 up to April 2004
inclusive; the process is repeated until all the executables
in the dataset are incorporated into the malware groups.
We end up with 43 groups, MG1…. MG43 altogether, as
shown in Figure II.

The Figures III and IV are similar to the first two
figures, except that they show the malware collection
trend and cumulated graph for the period 2009-2010. The
generation of the malware groups for the executables in
the new dataset is identical to that of the old dataset, as
explained above and in this case we obtain 19 malware
groups - MG1… MG19, as shown in Figure IV.

TABLE I. MALWARE FILES IN OLD DATASET.
Type Family Number of files

Virus

Emerleox 75
Looked 66
Agobot 283

Trojan

Clagger 44
Alureon 41
Bambo 44
Boxed 178

Robknot 78
Robzips 72

 TOTAL 881

TABLE II. MALWARE FILES IN NEW DATASET.

Type Family Number of files
Worm

Frethog 174

SillyAutorun 87

Trojan

Adclicker 65
Gamepass 179

Banker 47
SillyDI 439
Vundo 80
Bancos 446

 TOTAL 1517

B. Feature Extraction

In this section, we describe the type of features to be
used in the classification process. For the first test, we
extract the static and dynamic features for each malware
executable within the old and new datasets. The two
types of features are then combined to generate the
integrated feature vectors, as explained below.

Figure I. Collection of malware executables from 2002 to 2007.

1 1 1 1 2 1
8
13 13

12

34

45
40 37

6

16

26

6 3 5
10 8 7

12
8 66 4

12
19

8
12 9

56

24

32

1716

273031

51

41

51

1815

1
1

2 4 1 1

0

10

20

30

40

50

60

22
/1

0/
02

22
/1

2/
02

22
/2

/0
3

22
/4

/0
3

22
/6

/0
3

22
/8

/0
3

22
/1

0/
03

22
/1

2/
03

22
/2

/0
4

22
/4

/0
4

22
/6

/0
4

22
/8

/0
4

22
/1

0/
04

22
/1

2/
04

22
/2

/0
5

22
/4

/0
5

22
/6

/0
5

22
/8

/0
5

22
/1

0/
05

22
/1

2/
05

22
/2

/0
6

22
/4

/0
6

22
/6

/0
6

22
/8

/0
6

22
/1

0/
06

22
/1

2/
06

22
/2

/0
7

22
/4

/0
7

22
/6

/0
7

22
/8

/0
7

22
/1

0/
07

N
um

be
r o

f m
al

w
ar

e

948 JOURNAL OF NETWORKS, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

Figure II. Number of malware cumulated by month for the period 2002 to 2007.

 Figure III. Collection of malware executables from 2009 to 2010.

Figure IV. Number of malware cumulated by month for the period 2009 to 2010.

For the second test, the malware executables within the

old and new dataset are split into groups. To generate the
groups of malware, we start with the earliest malware and
add month by month across the years until all data is in
the final group. We take the earliest-dated 10% of the
executables to form the first group. Ultimately, we end up
with 43 groups in the old dataset and 19 groups in the
new dataset.

Static Features

We unpack all malware using a command line anti-
virus engine provided by CA Technologies. The software
allows us to unpack the executables in batch mode which
considerably reduces the unpacking time. We then
consider two static features which are: (a) Function
Length Frequency (FLF) and (b) Printable String
Information (PSI).

In extracting the FLF features, we follow the
methodology described in [16] using IDAPro to define
the functions.

0
100
200
300
400
500
600
700
800
900

1000

N
um

be
r o

f m
al

w
ar

e

83 95

195

245 250

330 318

163
133

69
33

74 64 62
87

67
45

24 137
0

50

100

150

200

250

300

350

N
um

be
r o

f m
al

w
ar

e

0
200
400
600
800

1000
1200
1400
1600

N
um

be
r o

f m
al

w
ar

e

JOURNAL OF NETWORKS, VOL. 7, NO. 6, JUNE 2012 949

© 2012 ACADEMY PUBLISHER

The lengths of each function (as a bitstring) are
computed and these lengths are divided into 50 ‘bins’
based on the methodology of [16]. The number 50 was
chosen as an arbitrary value and for future work, we plan
to test other values to compare results. Each bin is
correlated with the total number of function lengths (with
repeats) it contains and this number is called the function
length frequency of any function which has a length in
the bin.

As an example, we consider a malicious file, F, which
includes 12 functions which have the following lengths
(represented in bytes and in increasing order of size): 4,
5, 5, 12, 15, 15, 18, 19, 23, 45, 60 and 90. For the purpose
of illustration, let us create 10 exponentially spaced bins
based on the function length ranges. The distribution of
frequencies across the bins is depicted in Table III.

TABLE III.

FLF BIN DISTRIBUTION.

Length of functions per bin FLF Vectors
1-2 0
3-8 3
9-21 5

22-59 2
60-166 2
167-464 0

465-1291 0
1292-3593 0
3594-9999 0
>=10000 0

Finally, we select all the entries from the last column

of the above table to form the following FLF vector for
the file F: (0, 3, 5, 2, 2, 0, 0, 0, 0, 0). In our actual
experiment, we fix the bin size to 50 based on a global
list of all function length frequencies.

The second type of static feature, PSI, is extracted
from the disassembled malicious executables. For each
dataset, the printable strings are collected and combined
to build a global string list. The example below explains
the steps used in generating the PSI vector for a particular
malicious executable.

Let us consider the following global string list
consisting of 7 distinct strings: {“GetProcAddress”,
“RegQueryValueExW”, “CreateFileW”, “OpenFile”,
“FindFirstFileA”, “FindNextFileA”, “CopyMemory”},
where the order of strings within the list is fixed. Assume
that the list of printable strings extracted from a particular
executable file F, including repeats, is:
{“GetProcAddress”, “RegQueryValueExW”,
“CreateFileW”, “RegQueryValueExW”}. We then track
the presence of the strings in F against the global list
using a ‘1’ to indicate that a string is present (at least
once) in the global string list and a ‘0’ to denote the
absence of the string. Table IV presents the
corresponding information where we also include the
total number of strings (with repeats) in the file in the
first row. Hence, the corresponding PSI vector for F is
(4,1,1,1,0,0,0,0).

TABLE IV.
PSI DATA FOR FILE F.

Number of strings 4
“GetProcAddress” 1

“RegQueryValueExW” 1
“CreateFileW” 1

“OpenFile” 0
“FindFirstFileA” 0
“FindNextFileA” 0
“CopyMemory” 0

Dynamic Features
The dynamic features are obtained from runtime

behaviour of packed malware executables. We execute
both datasets in a controlled virtual machine (VM)
environment and record the behaviours in log files. To
generate the log files, the executables were run for 30
seconds and then stopped. Below is an excerpt of a log
file for executable F, where the API calls and the
parameters are shown in italics:

2010/09/02 11:24, RegQueryValueExW, Compositing
2010/09/02 11:24, RegOpenKeyExW, 0x54, Control Panel\Desktop
2010/09/02 11:24, RegQueryValueExW, LameButtonText
2010/09/02 11:24, LoadLibraryW, .\UxTheme.dll
2010/09/02 11:24, LoadLibraryExW, .\UxTheme.dll

Let us assume that the global API list of distinct

features is as follows: {“RegOpenKeyEx”,
“RegQueryValueExW”, “Compositing”,
“RegOpenKeyExW”, “0x54”, “Control Panel\Desktop”,
“LameButtonText”, “LoadLibraryW”, “.\UxTheme.dll”,
“LoadLibraryExW”, “MessageBoxW”}. We then
compare the API features from the log file of F with the
global list and count the frequencies of each item to
generate the dynamic vector.

In this case, the dynamic vector for F is
(0,2,1,1,1,1,1,1,2,1,0), drawn from the frequency column
of Table V.

TABLE V.

DYNAMIC FEATURE DATA FOR F.

Dynamic Features in global list Frequency
“RegOpenKeyEx” 0

“RegQueryValueExW” 2
“Compositing” 1

“RegOpenKeyExW” 1
“0x54” 1

“Control Panel\Desktop” 1
“LameButtonText” 1
“LoadLibraryW” 1
““.\UxTheme.dll” 2

“LoadLibraryExW” 1
“MessageBoxW” 0

Integrated Features

The integrated feature vector is a combination of the

FLF, PSI and dynamic vectors. The motivation behind
combining the different types of features described in the
previous subsections is to prevent a malware writer from
bypassing anti-virus technologies based on a single
component of a malware file.

950 JOURNAL OF NETWORKS, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

Hence, we collect the three vectors, FLF, PSI and
Dynamic, and merge them into a single vector for each
malicious executable, as shown in Figure V.

Length 1-2 functions 0
Length 3-7 functions 3
Length 9-21 functions 5

.

.

.

.
Number of strings 4

“GetProcAddress” 1
“RegQueryValueExW” 1

.

.

.

.
“RegOpenKeyEx” 0

“RegQueryValueExW” 2
.
.
.
.

Figure V. Example of an integrated vector.

IV. CLASSIFICATION

For the classification process, we use four base
classifiers from WEKA [5] representing a broad spectrum
of classifier types: Sequential Minimal Optimization
(SMO), Instance-Based (IB1), Decision Table (DT) and
Random Forest (RF), and apply the statistical method
known as 10-fold cross-validation [7] to classify the data.

 In the cross-validation phase, we select files from one
particular malware family and choose the same number
of files at random from other families, using a random
function. The files are then divided into 10 groups, where
one group is used as a testing set and each of the
remaining nine groups as a training set. The same
classification procedure is applied to the F/F and
cumulative tests.

A step-by-step breakdown of our methodology is given

below:
1. Extract and generate the vectors for the FLF, PSI

and dynamic features from all files in the Old
Dataset, as described in Section 3.

2. Build the integrated vector from the 3 feature
vectors in Step 1 and use these to generate the
WEKA (arff) files.

3. Select a malware family, M, and from the
remaining families, randomly choose a set of size
|M |of malware files.

4. For the malware files chosen in Step 3, consider
the set of corresponding arff files; break this set
into 10 groups of equal size using the procedure,
‘Making 10 groups of equal size’, discussed
below.

5. Select one of the constructed groups as a testing
set and the union of the remaining nine as a
training set.

6. Call WEKA libraries to train the classifiers using
the training set.

7. Evaluate the classifiers using the testing set.
8. Repeat steps 3 to 7 for the remaining families.

Then go to Step 9.
9. The first time, return to Step 1 and repeat for the

New Dataset. The second time, exit.

Making 10 groups of equal size

In Step 4 from the above described methodology, we

split the set of arff files, A, into 10 groups of equal size as
follows:

- If 10	| |A|, then each group has size ||ଵ.
- If 10 ∤ |A|, then we first generate 9 groups using

the following equation, |ܣ| = 	9 ∗ ܤ + where 0 ,ݎ ≤ r < 9,
whereby we take 9 groups of size B and place the
remaining r arff files in a 10th group along with
(B-r) randomly chosen arff files from A.

 We also apply the meta classifier, AdaboostM1, to

each of the base classifiers and rerun the tests. The meta
classifier enhances the capabilities of the base classifiers
by operating on the output of those classifiers. The
classification accuracies produced by AdaboostM1
represent the correctness of each file (also referred to as
an instance) classified by each of the four base classifiers,
as described in [18]. In all cases, the boosted base
classifiers perform better than the base classifier and
therefore we present only the meta-classifier results in the
next section.

V. ANALYSIS OF RESULTS

In this section, we describe the empirical results using
each of the four classifiers mentioned in Section 4. In our
first test we use malware family classification and in the
second test we use a cumulative approach to distinguish
malware from cleanware. However in both of these tests
we use an integrated feature generation approach. The
following sub-sections present our experimental results.

A. Experimental results – F/F classification

The classification results for the Old and New Datasets
are presented in Table VI and in Figure VI.

TABLE VI.
WEIGHTED AVERAGE ACCURACY (WITH ADABOOST).

Boosted Classifiers Old

Dataset
New

Dataset
SMO 98.9% 83.9%
IB1 99.2% 90.7%
DT 99.2% 92.4%
RF 99.8% 94.4%

FLF
features

PSI
feat-ures

Dynamic
features

JOURNAL OF NETWORKS, VOL. 7, NO. 6, JUNE 2012 951

© 2012 ACADEMY PUBLISHER

Figure VI. Weighted Average Accuracy.

Overall, RF outperformed the other classifiers with
99.8% classification accuracy for the Old Dataset and
94.4% for the New Dataset. These numbers also have the
smallest difference (5.4%) across classifiers. We believe
that the high accuracies obtained from RF can be
attributed to the fact that this classifier runs capably on
large datasets which incorporate diverse features, hence
confirming the effectiveness of using integrated features.

On the other hand, the classifier SMO shows worst
performance for the new dataset which is almost a 15%
drop in accuracy compared to old dataset. The reason for
this drop in accuracy between old and new datasets is not
clear and remains for further investigation. However, in
the classification process, while SMO builds its training
model, it determines optimal tangential hyperplanes
which can separate the data points (support vectors) into
categories. Then SMO attempts to classify these support
vectors into groups by determining on which side of a
hyperplane a point of data lies. It could be that the time-
consuming process of building the optimal hyperplanes

with minimum support vectors, reduces the classification
accuracy.

In addition, Figure VI indicates that the classification
accuracy of the old malware dataset shows significant
improvement compared to that of the new malware
dataset for all classifiers. It was observed that our old
experimental dataset consists of approximately 51% of
malicious files from Trojan families and 49% from virus
families while the new experimental dataset consists of
83% of malicious files from Trojan families and 17%
from worm families but contains no files from virus
families. Therefore, the dissimilarities of malware types
between the old and new families could have had an
impact on the drop in classification accuracy.

B. Experimental results – malware versus cleanware
using cumulative approach.

Figure VII shows the malware classification results
using the old data set (2002-2007) and Figure VIII those
of the new dataset (2009-2010). Although, overall, the
accuracy of the old dataset is better than that of the new
dataset, there are clear differences in accuracy within
each set over the respective time periods. In Figure VII,
there is a noticeable drop in accuracy (approx 3-4%)
between July 2006 and August 2006. Referring to Figure
II, this time period coincides with a significant jump in
the number of malware samples acquired and may
explain the drop in accuracy at this point. This needs
further investigation. We note that SMO and RF provide
more consistent accuracy than IB1 and DT.

Figure VIII shows the empirical results of our new
dataset collected over the time period 2009 to 2010. All
four classifiers give consistent performance with
comparable accuracy over the time period but, as in
Figure VII, SMO and RF give slightly better results
across the period than do DT and IB1. Figure IV
indicates a sharp rise in the number of samples
accumulated between April and September 2009, while
the general accuracy as shown in Figure VIII does not
appear to be affected by this.

Figure VII. Experimental results based on cumulative approach – old dataset.

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

20
02

-M
ar

-0
4

A
pr

-0
4

M
ay

-0
4

Ju
n-

04
Ju

l-0
4

A
ug

-0
4

Se
p-

04
O

ct
-0

4
N

ov
-0

4
D

ec
-0

4
Ja

n-
05

Fe
b-

05
M

ar
-0

5
A

pr
-0

5
M

ay
-0

5
Ju

n-
05

Ju
l-0

5
A

ug
-0

5
Se

p-
05

O
ct

-0
5

N
ov

-0
5

D
ec

-0
5

Ja
n-

06
Fe

b-
06

M
ar

-0
6

A
pr

-0
6

M
ay

-0
6

Ju
n-

06
Ju

l-0
6

A
ug

-0
6

Se
p-

06
O

ct
-0

6
N

ov
-0

6
D

ec
-0

6
Ja

n-
07

Fe
b-

07
M

ar
-0

7
A

pr
-0

7
M

ay
-0

7
A

ug
-0

7
Se

p-
07

O
ct

-0
7

N
ov

-0
7

SMO

IB1

DT

RF

952 JOURNAL OF NETWORKS, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

Figure VIII. Experimental results based on cumulative approach – new dataset.

The following tables summarize the average results of

our cumulative tests using our old and new datasets.
Table VII shows the average results of false positive
(FP), false negative (FN) and accuracy (ACC) of the four
classifiers on the old dataset. SMO gives the best average
performance (classification accuracy 98.68% with lowest
FP and FN) for all parameters compared to the others and
IB1 performs worst in this test.

TABLE VII.

 AVERAGE SUMMARY RESULTS (FOR OLD DATASET)
Classifier FP FN ACC

SMO 0.00339 0.02195 98.68114

IB1 0.005415 0.064578 96.47692

DT 0.011669 0.051574 97.27089

RF 0.012961 0.029558 97.88233

Table VIII shows the average results of the new
dataset. It is clear that the average performance of the old
dataset is better compared to the new dataset for all
parameters. As for the old dataset, SMO shows
significantly better performance here compared to the
other classifiers and IB1 is the worst.

TABLE VIII.
 AVERAGE SUMMARY RESULTS (FOR NEW DATASET)

Classifier FP FN ACC

SMO 0.009418 0.044494 97.33234

IB1 0.017546 0.154653 91.47096

DT 0.035676 0.099289 94.22557

RF 0.006605 0.063789 96.48839

VII. DISCUSSION AND FUTURE WORK

 While our malware classification strategy worked
very well on the old malware set, the results were much
more moderate on the new malware set. This weaker

result was almost certainly due to the difference in
malware in the samples. Some malware families in the
New Dataset require the user’s input along with an
Internet connection in order to execute some of the in-
built functions, and so these functions would not have
been extracted into our classification test using our
method. In contrast, the boosted RF test gave reasonable
results and this indicates that older classification
techniques should not be abandoned en masse but that
they could be adapted to cope with malware as it evolves.
One such adaptation might be to include both old and
new malware in the same test; another might be to
combine the features for the datasets in other ways as, for
example, in [12].

 On the other hand, the classification results of our
second test, using a cumulative approach to distinguish
malware from cleanware, show more consistent
performance on the new dataset compared to the old
dataset. However, the accuracy on the old dataset is
better than on the new dataset. Therefore, it is obvious
from our results that it is possible to develop a malware
classification technique which can defend against future
malware.

Moreover, we have demonstrated in this paper that it
is possible to develop an anti-malware technique which
can maintain consistent performance with more
advanced, future malware. The main approach we have
used was to combine all feature types, derived from FLF,
PSI and dynamic API calls and API parameters, into a
single vector thus allowing the classifier algorithm to
identify complex patterns which span multiple feature
types. Our empirical study indicates that our strategy
performed well on the new malware data set with a 5.4%
drop in accuracy (both for the family classification
approach and cumulative approach). Therefore it is
expected that our proposed method can deal with
malware generated in 2012 and beyond. However, it is
difficult to predict whether the detection rate will
maintain the same performance or not. In our future work

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

SVM

IB1

DT

RF

JOURNAL OF NETWORKS, VOL. 7, NO. 6, JUNE 2012 953

© 2012 ACADEMY PUBLISHER

we will investigate the capabilities of our system on more
challenging datasets.

ACKNOWLEDGEMENT

The authors wish to thank Dr. Steve Versteeg of CA
Technologies for his support and advice on the work in
this paper.

REFERENCES
[1] Bailey, M., Oberheide, J., Andersen, J., Mao, Z., Jahanian,

F. and Nazario, J. (2007) Automated Classification and
Analysis of Internet Malware, Chapter in Recent Advances
in Intrusion Detection, LNCS 4637, 178-197, 2007.

[2] Barford, P., Yagneswaran, V. (2007) An inside look at
botnets. Advances in Information Security, Springer,
Heidelberg, 171-191.

[3] Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P. and
Fienberg, S., (2003) Adaptive name matching in
information integration, Intelligent Systems, IEEE 18(5),
16 - 23.

[4] Fossi, M., Mack, T., Mazurek, D., Egan, G., Adams, T.,
McKinney, D., Haley, K., Blackbird, J., Wood, P.,
Johnson, E. and Low, M. (2011), 'Symantec Internet
security threat report: Trends for 2010', Volume 16, 20
pages.

[5] Hall, M., Frank, E., Holmes, G., Pfahringer, B.,
Reutemann, P. and Witten, I. (2009); The WEKA Data
Mining Software: An Update; SIGKDD Explorations,
Volume 11, Issue 1.

[6] Islam, R., Tian, R., Moonsamy, V., Batten, L., Versteeg, S.:
A cumulative timeline approach to malware detection.
Submitted.

[7] Kohavi, R. (1995) A study of cross-validation and bootstrap
for accuracy estimation and model selection. In IJCAI,
1137–1145

[8] Lee, J.; Im, C. and Jeong, H. (2011), A study of malware
detection and classification by comparing extracted
strings, in 'Proceedings of the 5th International
Conference on Ubiquitous Information Management and
Communication', ACM, New York, NY, USA, 75:1-75:4.

[9] Nair, V., Jain, H., Golecha, Y., Gaur, M. and Laxmi, V.
(2010), MEDUSA: Metamorphic malware dynamic
analysis using signature from API, in 'Proceedings of the
3rd international conference on Security of information
and networks', ACM, 263-269.

[10] Rajab, M., Ballard, L., Jagpal, N., Mavrommatis, P.,
Nojiri, D., Provos, N. and Schmidt, L. (2011) Trends in
Circumventing Web-Malware Detection. Google
Technical Report.

[11] Rosayid, N., OhruiI, M., Kikuchi, H., Sooraksa, P. and
Terada, M. (2010) A Discovery of Sequential Attack
Patterns of Malware in Botnets, Information Processing
Society of Japan, SMC 2010, 2564-2570.

[12] Roundy, K. and Miller, B. (2010), Hybrid Analysis and
Control of Malware, in 'Recent Advances in Intrusion
Detection', Springer Berlin - Heidelberg, 317-338.

[13] Sukwong, O., Kim, H. and Hoe, J. (2010) An Empirical
Study of Commercial Antivirus Software Effectiveness,
Computer 44 (3), 63-70.

[14] Tang, H., Zhu, B. and Ren, K. (2009), A New Approach to
Malware Detection, in Jong Park; Hsiao-Hwa Chen;
Mohammed Atiquzzaman; Changhoon Lee; Tai-hoon Kim
& Sang-Soo Yeo, ed., 'Advances in Information Security
and Assurance', Springer Berlin / Heidelberg, 229-238.

 [15] Tian, R., Batten, L., and Versteeg, S. (2008) Function
length as a tool for malware classification. In Proceedings
of the 3rd International Conference on Malicious and
Unwanted Software: MALWARE 2008, 69–76.

[16] Tian, R., Islam, R., Batten, L., and Versteeg, S. (2010)
Differentiating malware from cleanware using behavioural
analysis. In Proceedings of the 5th International
Conference on Malicious and Unwanted Software:
MALWARE 2010, 23-30.

[17] Witten, I., Frank, E., Trigg, L., Hall, M., Holmes, G. and
Cunningham, S. (1999) Weka: Practical machine learning
tools and techniques with Java implementations, in
Computer Science Working Papers, 10289/1040,
University of Waikato, 192-196.

[18] Yagi, T., Tanimoto, N., Hariu, T. and Itoh, M. (2010)
Investigation and analysis of malware on websites, in 'Web
Systems Evolution’ (WSE), 2010, IEEE , 73 -81.

[19] You, I. and Yim, K. (2010) Malware Obfuscation
Techniques: A Brief Survey, in 'Broadband, Wireless
Computing, Communication and Applications’ (BWCCA),
297 -300.

[20] Zheng, X. and Fang, Y. (2010), An AIS-based cloud
security model, in 'Intelligent Control and Information
Processing (ICICIP), 153 -158

[21] Cyveillance, accessed on 19th May 2011,
http://www.cyveillance.com/web/news/press_rel/2010/201
0-08-04.asp

 Dr. Rafiqul Islam is working

as Research Academic with School
of Information Technology, Deakin
University, Melbourne, Australia.
He obtained his Ph.D. from School
of Engineering and Information
Technology, Deakin University,
Melbourne, Australia. He has
published more than 50 peer
reviewed research papers. He is

Fellow member of AATT and Member of IEEE. His research
interest includes IT security, Machine learning, Cluster
classification etc. He is involved in different International
conferences such as IEEE ICIS, IEEE NSS, IEEE ISPAN,
ATIS, IEEE SNPD, IEEE ICCIT, IEEE SERA, IEEE SSNE,
ATIS etc.

Ronghua Tian is currently a PHD
candidate at Deakin University in
Australia. She obtained her Master of
Engineering in Computer Organization
and Architecture at Chongqing
University in China. She obtained her
Bachelor of Engineering in Computer
Software

at Changchun University of
Science and Technology in China. Her

current research topic is Malware Analysis and Classification
and her research interests spanned various topics including
agent-related technology, P2P-based Distributed Storage
Technology, Real Time Database System. She has worked as
research assistant at Deakin University in Australia. She has
worked as Systems Designer and Applications and Analyst
Programmer in China. She also worked as LAN Administrator
in China.

954 JOURNAL OF NETWORKS, VOL. 7, NO. 6, JUNE 2012

© 2012 ACADEMY PUBLISHER

Veelasha Moonsamy
completed her Bachelor (Hons) of
Information Technology with a
major in IT Security at Deakin
University in 2011. Her Honours
thesis focused on the use of feature
reduction methods to speed up
malware classification. Her research
interests include malicious software,
machine learning algorithms and

security protocols.

Professor Lynn Batten holds the
Deakin Research Chair in Mathematics
and is Director of Information Security
Research at Deakin University. She is a
Fellow of the Australian Computer
Society, a Graduate of the Australian
institute of Company Directors and a
Senior Member of the IEEE. Her
research interests cover a broad set of
areas in information security from

cryptography to malicious software and digital forensics.

JOURNAL OF NETWORKS, VOL. 7, NO. 6, JUNE 2012 955

© 2012 ACADEMY PUBLISHER

