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Abstract- It has been argued that an anti-virus strategy 
based on malware collected at a certain date, will not work 
at a later date because malware evolves rapidly and an anti-
virus engine is then faced with a completely new type of 
executable not as amenable to detection as the first was. 

In this paper, we test this idea by collecting two sets of 
malware, the first from 2002 to 2007, the second from 2009 
to 2010 to determine how well the anti-virus strategy we 
developed based on the earlier set [18] will do on the later 
set.  This anti-virus strategy integrates dynamic and static 
features extracted from the executables to classify malware 
by distinguishing between families. We also perform 
another test, to investigate the same idea whereby we 
accumulate all the malware executables in the old and new 
dataset, separately, and apply a malware versus cleanware 
classification.  

The resulting classification accuracies are very close for 
both datasets, with a difference of approximately 5.4% for 
both experiments, the older malware being more accurately 
classified than the newer malware. This leads us to 
conjecture that current anti-virus strategies can indeed be 
modified to deal effectively with new malware. 
 
Index Terms -  malware, classification, static, dynamic. 
 

I. INTRODUCTION 

With the growth of the shadow Internet economy, 
malware is no longer simply used to damage, break or 
intrude on computer network systems, but now exists 
primarily as one of the important means used by 
criminals to make a profit. Malware has already become a 
global problem which has affected different parts of the 
world in different ways. The upsurge in the number of new 
samples collected by the anti-virus companies over the last 
few decades [4]  clearly justifies the need for continuous 
deep analysis of malicious files in order to improve the 
efficacy of anti-virus software.  So far, the researchers 
contributing within the malware field are unable to find an 
efficient detection approach which is capable of classifying 
malware and differentiating between malware and cleanware 
over a long period of time, as explained below. 

The work in [15, 21, 13, 2, 1, 19, 14, 9] supports the 
argument that an anti-virus strategy which has been 
successful in a given time period will not work at a much 
later date; this, they argue, is due to changes in malware 
design which evolves with time and eventually becomes 
unrecognizable from the original form. Their work indicates 
that current techniques failed to find a distinctive pattern of 

malicious software which can be used to identify future 
malware with the level of accuracy required.   

Despite the strong support in the literature for the idea 
that current detection methods will not easily detect 
future malware, in this paper, we demonstrate that it is 
possible to develop a malware detection strategy which 
maintains stable performance over an extended time 
period. We do so by considering two sets of malware, one 
collected during the period 2002 to 2007 (881 samples) 
and the other during the period 2009 to 2010 (1517 
samples).  All samples come from CA Technologies VET 
Zoo (www.ca.com) and all have been pre-classified as 
members of particular families. The key contribution of 
this paper is the provision of strong evidence that anti-
virus techniques which work well on malware developed 
at a certain time may continue to be effective on malware 
developed at a much later time.  

We do two different experiments in this paper to test 
our idea;   

i) One for malware family classification to observe 
the results of two different time periods and   

ii) The other for malware versus cleanware 
classification using a cumulative approach to 
observe the consistent performance of malware 
over time within the two different time periods.  

The rest of the paper is organized as follows: Section 
2 includes a summary of the related work on comparison 
of malware classification over a time period. In Section 3 
we elaborate on the data preparation while Section 4 
describes the classification process. Section 5 provides an 
analysis of the results and lastly, in Section 6 we discuss 
these results and present some ideas for future work.  

II. RELATED WORK 

In this section, we review the literature on malware 
detection and classification which has emphasized a 
comparison of results over a time period. 

More and more malware writers use various 
obfuscation technologies such as packing, encrypting or 
polymorphisms, to transform a malicious program into 
variants so that the latter cannot be detected by anti-virus 
detection engines.  In practice, there is no system that can 
achieve 100% classification accuracy. Some researchers 
have achieved quite good results by testing different 
approaches on various data sets. We discuss some of 
these here. 
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Bailey et al. [1] describe malware behaviour in terms 
of system state changes (taken from event logs). They 
compare over 3000 pre-classified samples with over 3000 
unclassified samples using a clustering technique to 
measure closeness. Testing about 8,000 malware samples 
collected over the period 2004 to 2007, they achieve an 
overall classification accuracy of almost 92%. In their 
study they use three different evaluation techniques: 
completeness, conciseness, and consistency. The authors 
mention that one limitation of their methodology is the 
failure to “detect fine-grained characteristics of the 
observed behaviours”.  

Zheng and Fang [20] propose a novel infrastructure for 
malware detection that can be implemented in a cloud 
system thus relieving a local end system of strenuous 
processing of suspicious files. They compare detection 
rates on malware sets which differ in age by up to 3 
months, with diminishing levels of accuracy. 

The authors of [6] use a combination of static and 
dynamic analysis to achieve a high level of malware 
accuracy (97%) over an eight year time period, 
demonstrating that including ‘older’ malware in the set 
for feature selection can assist in identifying ‘new’ 
malware. 

The work of Roundy and Miller [12] showed that by 
applying a hybrid of dynamic and static analysis, the 
probability of correctly detecting malicious programs can 
be significantly increased. They incorporate static and 
dynamic methods to complement each other to make the 
detection and classification effective and robust to 
changes in malware evolution. The combined algorithm 
provides “analysis-guided instrumentation on obfuscated, 
packed and self-modifying binaries” [12, p.335]. The 
authors tested their algorithm on 200 malware sample and 
found that 33% of the malicious code analysed by the 
combined methods were not part of the dynamic 
execution trace reports and would not have been 
identified by dynamic analysis alone.  

The study in [18] investigates malicious attacks on 
several websites by creating web honeypots and 
collecting 366 website-based malware executables over a 
period of five months. In their study, they carry out two 
investigations: (i) collect and analyse malware samples 
using 6 different anti-virus programs, and (ii) conduct the 
same experiment four months later using the updated 
versions of the 6 programs to determine their efficacy. 
The authors categorize the 366 malware samples under 
four types of malware:  strings generator (110 samples), 
information investigator (191 samples), downloader (2 
samples) and bot generator (63 samples).  In the first 
investigation, the group of anti-virus programs detected 
only 3% and 13% of the first and fourth types of malware 
respectively. The second and third types of malware went 
undetected. In the second investigation, the detection 
rates improved to the extent that one anti-virus program 
successfully detected 74% of the malware from the 
dataset, but the detection percentages for the rest of the 
anti-virus software were under 50%.  This work 
demonstrates that, with training on older malware, some 

anti-virus software can improve detection rates 
significantly.  

The research conducted by Rosyid et al. [11] is 
focused on detecting malicious attack patterns in botnets. 
They use a set of sequential attacks which was recorded 
by a honeypot during the year 2009. The log files include 
the sequences of malware occurring in a particular time 
slot, where the duration of one slot is 20 minutes and the 
average number of slots in one day is 72. After extracting 
the malware sequences, they then apply the PrefixSpan 
algorithm to discover subsequence patterns. The authors 
extend their work by identifying attack patterns based on 
IP address and timestamp; this allows the authors to track 
the IP addresses and to determine the source and 
distribution pattern of the malware. Finally, the strength 
of a sequential attack pattern is represented by a 
confidence value. The highest confidence values for 2-
pattern and 3-pattern are on average less than 50% and 
57.93% respectively. The authors argue, therefore, that 
the signature of a single malware file is not enough to 
detect the complex variants of the attacks by botnets.  

Another group of researchers [8], build their malware 
detection and classification framework based on 
comparisons of extracted strings using static analysis. 
The authors suggest a malware detection and 
classification system using the method of comparing 
different character strings, which in turn is used to 
identify and determine whether two instances are 
variants.  The authors present a three-step methodology 
of extraction, refinement and comparison. In the 
extraction stage, all the printable strings existing in 
binary files are collected. The strings are then passed on 
to the refinement phase where the misleading characters 
that might affect the classification process are eliminated. 
The authors choose a set of 100 malware files to 
determine the type of characters to be discarded and 
apply the results to a set of 10,000 previously identified 
malware samples which were collected over several 
months. In the comparison phase, a modified Jaro-
Wrinkler Distance [3] formula is used to measure the 
number of similar character strings between two different 
string groups and then, the Edit distance [3] formula is 
used to determine the similarity between two different 
character strings. The authors conclude that it is 
necessary to connect various static analysis methods in 
parallel, and in some cases, consider the need for the 
interlocking of a dynamic analysis method to create a 
more accurate, generalized system. 

In [10], the authors study the resulting arms race 
between detection and evasion from the point of view of 
Google’s Safe Browsing infrastructure, an operational 
web-malware detection system that serves hundreds of 
millions of users. Their study focuses on the four most 
prevalent detection techniques: Virtual Machine 
honeypots, Browser Emulation honeypots, Classification 
based on Domain Reputation, and Anti-Virus Engines. 
The analysis is based on the data collected over a four 
year period. They propose and verify the hypothesis that 
malware authors continue to pursue delivery mechanisms 
that can confuse malware detection systems. Their results 
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show that none of the four detection techniques 
mentioned above are effective in isolation, but that 
adopting a multi-pronged approach can improve detection 
rates. 

III. DATA PREPARATION 

In this section we provide a detailed explanation of the 
experiment. Section A describes the datasets that are 
used; Section B introduces our feature extraction method. 

A. Datasets 

The date used for each malware sample was the date 
assigned to the malware as it was received by CA 
Technologies VET Zoo. It is of interest to note that 
within the total of 2398 malware files, no family is 
represented in both Old and New Datasets. This was not 
done intentionally but is a true representation of the data 
in the Zoo.  

In our experiment, we use the term ‘Old Dataset’ to 
refer to the malicious files collected between 2002 and 
2007 and the term ‘New Dataset’ for those collected 
between 2009 and 2010. Under this section, we explain 
the data set preparation process for our two different 
tests: (i) Family by Family and (ii) Cumulative approach. 
 
Family by Family (F/F) Malware Classification Test  

 
Tables I and II list the families in the Old and New 

Datasets respectively, along with the numbers of files per 
family. The date used was the date assigned to the 
malware as it was received by CA Technologies VET 
Zoo.  

 
Cumulative Cleanware versus Malware Test  

For the second test, we accumulate the malware 
executables within the old and new datasets separately 
and carry out a malware versus cleanware classification. 

The number of clean files used in our experiment is 
541 and all are Win32 based executables.  

Figure I shows the number of malware collected by 
month for the years 2002-2007. Figure II depicts the 
cumulative graph of the malware executables collected 
each month for the period 2002-2007. To generate the 
first malware group MG1, we take the earliest-dated 10% 
of the malware executables which comprises 90 

executables and includes the period October 2002 to 
March 2004. The second data group MG2 contains the 
executables from October 2002 up to April 2004 
inclusive; the process is repeated until all the executables 
in the dataset are incorporated into the malware groups. 
We end up with 43 groups, MG1…. MG43  altogether, as 
shown in Figure II. 

The Figures III and IV are similar to the first two 
figures, except that they show the malware collection 
trend and cumulated graph for the period 2009-2010. The 
generation of the malware groups for the executables in 
the new dataset is identical to that of the old dataset, as 
explained above and in this case we obtain 19 malware 
groups - MG1… MG19, as shown in Figure IV. 
 

TABLE I.  MALWARE FILES IN OLD DATASET. 
Type Family Number of files 

 
Virus 

Emerleox 75 
Looked 66 
Agobot 283 

 
 

Trojan 

Clagger 44 
Alureon 41 
Bambo 44 
Boxed 178 

Robknot 78 
Robzips 72 

 TOTAL 881 
 

 
TABLE II.  MALWARE FILES IN NEW DATASET. 

Type Family Number of files 
Worm 

 
Frethog 174 

SillyAutorun 87 
 
 

Trojan 

Adclicker 65 
Gamepass 179 

Banker 47 
SillyDI 439 
Vundo 80 
Bancos 446 

 TOTAL 1517 
   

B. Feature Extraction 

In this section, we describe the type of features to be 
used in the classification process. For the first test, we 
extract the static and dynamic features for each malware 
executable within the old and new datasets. The two 
types of features are then combined to generate the 
integrated feature vectors, as explained below.  

 
Figure I. Collection of malware executables from 2002 to 2007. 
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Figure II. Number of malware cumulated by month for the period 2002 to 2007. 

 Figure III. Collection of malware executables from 2009 to 2010. 

 
Figure IV. Number of malware cumulated by month for the period 2009 to 2010. 

 
For the second test, the malware executables within the 

old and new dataset are split into groups. To generate the 
groups of malware, we start with the earliest malware and 
add month by month across the years until all data is in 
the final group. We take the earliest-dated 10% of the 
executables to form the first group. Ultimately, we end up 
with 43 groups in the old dataset and 19 groups in the 
new dataset.  

 
Static Features 

We unpack all malware using a command line anti-
virus engine provided by CA Technologies. The software 
allows us to unpack the executables in batch mode which 
considerably reduces the unpacking time. We then 
consider two static features which are: (a) Function 
Length Frequency (FLF) and (b) Printable String 
Information (PSI). 

In extracting the FLF features, we follow the 
methodology described in [16] using IDAPro to define 
the functions.  
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The lengths of each function (as a bitstring) are 
computed and these lengths are divided into 50 ‘bins’ 
based on the methodology of [16]. The number 50 was 
chosen as an arbitrary value and for future work, we plan 
to test other values to compare results. Each bin is 
correlated with the total number of function lengths (with 
repeats) it contains and this number is called the function 
length frequency of any function which has a length in 
the bin.  

As an example, we consider a malicious file, F, which   
includes 12 functions which have the following lengths 
(represented in bytes and in increasing order of size): 4, 
5, 5, 12, 15, 15, 18, 19, 23, 45, 60 and 90. For the purpose 
of illustration, let us create 10 exponentially spaced bins 
based on the function length ranges. The distribution of 
frequencies across the bins is depicted in Table III. 

 
TABLE III.   

FLF BIN DISTRIBUTION. 
 

Length of functions per bin FLF Vectors 
1-2 0 
3-8 3 
9-21 5 

22-59 2 
60-166 2 
167-464 0 

465-1291 0 
1292-3593 0 
3594-9999 0 
>=10000 0 

 
Finally, we select all the entries from the last column 

of the above table to form the following FLF vector for 
the file F:  (0, 3, 5, 2, 2, 0, 0, 0, 0, 0). In our actual 
experiment, we fix the bin size to 50 based on a global 
list of all function length frequencies.  

The second type of static feature, PSI, is extracted 
from the disassembled malicious executables. For each 
dataset, the printable strings are collected and combined 
to build a global string list. The example below explains 
the steps used in generating the PSI vector for a particular 
malicious executable. 

Let us consider the following global string list 
consisting of 7 distinct strings: {“GetProcAddress”, 
“RegQueryValueExW”, “CreateFileW”, “OpenFile”, 
“FindFirstFileA”, “FindNextFileA”, “CopyMemory”}, 
where the order of strings within the list is fixed. Assume 
that the list of printable strings extracted from a particular 
executable file F, including repeats, is: 
{“GetProcAddress”, “RegQueryValueExW”, 
“CreateFileW”, “RegQueryValueExW”}. We then track 
the presence of the strings in F against the global list 
using a ‘1’ to indicate that a string is present (at least 
once) in the global string list and a ‘0’ to denote the 
absence of the string. Table IV presents the 
corresponding information where we also include the 
total number of strings (with repeats) in the file in the 
first row. Hence, the corresponding PSI vector for F is 
(4,1,1,1,0,0,0,0). 

 
 

 

TABLE IV.   
PSI DATA FOR FILE F. 

 
Number of strings 4 
“GetProcAddress” 1 

“RegQueryValueExW” 1 
“CreateFileW” 1 

“OpenFile” 0 
“FindFirstFileA” 0 
“FindNextFileA” 0 
“CopyMemory” 0 

 
Dynamic Features 
The dynamic features are obtained from runtime 

behaviour of packed malware executables. We execute 
both datasets in a controlled virtual machine (VM) 
environment and record the behaviours in log files. To 
generate the log files, the executables were run for 30 
seconds and then stopped. Below is an excerpt of a log 
file for executable F, where the API calls and the 
parameters are shown in italics: 

 
2010/09/02 11:24, RegQueryValueExW, Compositing 
2010/09/02 11:24, RegOpenKeyExW, 0x54, Control Panel\Desktop 
2010/09/02 11:24, RegQueryValueExW, LameButtonText 
2010/09/02 11:24, LoadLibraryW, .\UxTheme.dll 
2010/09/02 11:24, LoadLibraryExW, .\UxTheme.dll 

 
Let us assume that the global API list of distinct 

features is as follows: {“RegOpenKeyEx”, 
“RegQueryValueExW”, “Compositing”, 
“RegOpenKeyExW”, “0x54”, “Control Panel\Desktop”, 
“LameButtonText”, “LoadLibraryW”, “.\UxTheme.dll”, 
“LoadLibraryExW”, “MessageBoxW”}. We then 
compare the API features from the log file of F with the 
global list and count the frequencies of each item to 
generate the dynamic vector. 

In this case, the dynamic vector for F is 
(0,2,1,1,1,1,1,1,2,1,0), drawn from the frequency column 
of Table V. 

 
TABLE V.   

DYNAMIC FEATURE DATA FOR F. 
 

Dynamic Features in global list Frequency 
“RegOpenKeyEx” 0 

“RegQueryValueExW” 2 
“Compositing” 1 

“RegOpenKeyExW” 1 
“0x54” 1 

“Control Panel\Desktop” 1 
“LameButtonText” 1 
“LoadLibraryW” 1 
““.\UxTheme.dll” 2 

“LoadLibraryExW” 1 
“MessageBoxW” 0 

Integrated Features 
 
The integrated feature vector is a combination of the 

FLF, PSI and dynamic vectors. The motivation behind 
combining the different types of features described in the 
previous subsections is to prevent a malware writer from 
bypassing anti-virus technologies based on a single 
component of a malware file.  
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Hence, we collect the three vectors, FLF, PSI and 
Dynamic, and merge them into a single vector for each 
malicious executable, as shown in Figure V. 
 

Length 1-2 functions 0 
Length 3-7 functions 3 
Length 9-21 functions 5 

. 

. 

. 

. 
Number of strings 4 

“GetProcAddress” 1 
“RegQueryValueExW” 1 

. 

. 

. 

. 
“RegOpenKeyEx” 0 

“RegQueryValueExW” 2 
. 
. 
. 
. 

 
Figure V. Example of an integrated vector. 

IV. CLASSIFICATION 

For the classification process, we use four base 
classifiers from WEKA [5] representing a broad spectrum 
of classifier types: Sequential Minimal Optimization 
(SMO), Instance-Based (IB1), Decision Table (DT) and 
Random Forest (RF), and apply the statistical method 
known as 10-fold cross-validation [7] to classify the data.  

  In the cross-validation phase, we select files from one 
particular malware family and choose the same number 
of files at random from other families, using a random 
function. The files are then divided into 10 groups, where 
one group is used as a testing set and each of the 
remaining nine groups as a training set. The same 
classification procedure is applied to the F/F and 
cumulative tests. 

 
A step-by-step breakdown of our methodology is given 

below: 
1. Extract and generate the vectors for the FLF, PSI 

and dynamic features from all files in the Old 
Dataset, as described in Section 3. 

2. Build the integrated vector from the 3 feature 
vectors in Step 1 and use these to generate the 
WEKA (arff) files. 

3. Select a malware family, M, and from the 
remaining families, randomly choose a set of size 
|M |of malware files.  

4. For the malware files chosen in Step 3, consider 
the set of corresponding arff files; break this set 
into 10 groups of equal size using the procedure, 
‘Making 10 groups of equal size’, discussed 
below.  

5. Select one of the constructed groups as a testing 
set and the union of the remaining nine as a 
training set. 

6. Call WEKA libraries to train the classifiers using 
the training set.  

7. Evaluate the classifiers using the testing set. 
8. Repeat steps 3 to 7 for the remaining families. 

Then go to Step 9. 
9. The first time, return to Step 1 and repeat for the 

New Dataset. The second time, exit. 
 
Making 10 groups of equal size 
 
In Step 4 from the above described methodology, we 

split the set of arff files, A, into 10 groups of equal size as 
follows: 

- If 10	| |A|, then each group has size ||ଵ. 
- If 10 ∤ |A|, then we first generate 9 groups using 

the following equation,  |ܣ| = 	9 ∗ ܤ + where 0 ,ݎ ≤  r < 9, 
whereby we take 9 groups of size B and place the 
remaining r arff files in a 10th group along with 
(B-r) randomly chosen arff files from A.  

  
  We also apply the meta classifier, AdaboostM1, to 

each of the base classifiers and rerun the tests. The meta 
classifier enhances the capabilities of the base classifiers 
by operating on the output of those classifiers. The 
classification accuracies produced by AdaboostM1 
represent the correctness of each file (also referred to as 
an instance) classified by each of the four base classifiers, 
as described in [18]. In all cases, the boosted base 
classifiers perform better than the base classifier and 
therefore we present only the meta-classifier results in the 
next section.     

V. ANALYSIS OF RESULTS 

In this section, we describe the empirical results using 
each of the four classifiers mentioned in Section 4. In our 
first test we use malware family classification and in the 
second test we use a cumulative approach to distinguish 
malware from cleanware. However in both of these tests 
we use an integrated feature generation approach. The 
following sub-sections present our experimental results.  

 

A. Experimental results – F/F classification 

The classification results for the Old and New Datasets 
are presented in Table VI and in Figure VI. 

 
 

TABLE VI.   
WEIGHTED AVERAGE ACCURACY (WITH ADABOOST). 

 
Boosted Classifiers Old 

Dataset 
New 

Dataset 
SMO 98.9% 83.9% 
IB1 99.2% 90.7% 
DT 99.2% 92.4% 
RF 99.8% 94.4% 

   

FLF 
features 

PSI 
feat-ures 

Dynamic 
features 
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Figure VI. Weighted Average Accuracy. 

Overall, RF outperformed the other classifiers with 
99.8% classification accuracy for the Old Dataset and 
94.4% for the New Dataset. These numbers also have the 
smallest difference (5.4%) across classifiers. We believe 
that the high accuracies obtained from RF can be 
attributed to the fact that this classifier runs capably on 
large datasets which incorporate diverse features, hence 
confirming the effectiveness of using integrated features.  

On the other hand, the classifier SMO shows worst 
performance for the new dataset which is almost a 15% 
drop in accuracy compared to old dataset. The reason for 
this drop in accuracy between old and new datasets is not 
clear and remains for further investigation. However, in 
the classification process, while SMO builds its training 
model, it determines optimal tangential hyperplanes 
which can separate the data points (support vectors) into 
categories. Then SMO attempts to classify these support 
vectors into groups by determining on which side of a 
hyperplane a point of data lies.  It could be that the time-
consuming process of building the optimal hyperplanes 

with minimum support vectors, reduces the classification 
accuracy.    

In addition, Figure VI indicates that the classification 
accuracy of the old malware dataset shows significant 
improvement compared to that of the new malware 
dataset for all classifiers. It was observed that our old 
experimental dataset consists of approximately 51% of 
malicious files from Trojan families and 49% from virus 
families while the new experimental dataset consists of 
83% of malicious files from Trojan families and 17% 
from worm families but contains no files from virus 
families. Therefore, the dissimilarities of malware types 
between the old and new families could have had an 
impact on the drop in classification accuracy. 

B. Experimental results – malware versus cleanware 
using cumulative approach. 

Figure VII shows the malware classification results 
using the old data set (2002-2007) and Figure VIII those 
of the new dataset (2009-2010). Although, overall, the 
accuracy of the old dataset is better than that of the new 
dataset, there are clear differences in accuracy within 
each set over the respective time periods. In Figure VII, 
there is a noticeable drop in accuracy (approx 3-4%) 
between July 2006 and August 2006. Referring to Figure 
II, this time period coincides with a significant jump in 
the number of malware samples acquired and may 
explain the drop in accuracy at this point.  This needs 
further investigation. We note that SMO and RF provide 
more consistent accuracy than IB1 and DT. 

Figure VIII shows the empirical results of our new 
dataset collected over the time period 2009 to 2010.  All 
four classifiers give consistent performance with 
comparable accuracy over the time period but, as in 
Figure VII, SMO and RF give slightly better results 
across the period than do DT and IB1. Figure IV 
indicates a sharp rise in the number of samples 
accumulated between April and September 2009, while 
the general accuracy as shown in Figure VIII does not 
appear to be affected by this.  

 
Figure VII. Experimental results based on cumulative approach – old dataset. 
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Figure VIII. Experimental results based on cumulative approach – new dataset. 

 
The following tables summarize the average results of 

our cumulative tests using our old and new datasets. 
Table VII shows the average results of false positive 
(FP), false negative (FN) and accuracy (ACC) of the four 
classifiers on the old dataset. SMO gives the best average 
performance (classification accuracy 98.68% with lowest 
FP and FN) for all parameters compared to the others and 
IB1 performs worst in this test. 

 
TABLE VII.   

 AVERAGE SUMMARY RESULTS (FOR OLD DATASET) 
Classifier FP FN ACC 

SMO 0.00339 0.02195 98.68114 

IB1 0.005415 0.064578 96.47692 

DT 0.011669 0.051574 97.27089 

RF 0.012961 0.029558 97.88233 

 

Table VIII shows the average results of the new 
dataset. It is clear that the average performance of the old 
dataset is better compared to the new dataset for all 
parameters. As for the old dataset, SMO shows 
significantly better performance here compared to the 
other classifiers and IB1 is the worst.  

 

TABLE VIII.   
 AVERAGE SUMMARY RESULTS (FOR NEW DATASET) 

 
Classifier FP FN ACC 

SMO 0.009418 0.044494 97.33234 

IB1 0.017546 0.154653 91.47096 

DT 0.035676 0.099289 94.22557 

RF 0.006605 0.063789 96.48839 

VII. DISCUSSION AND FUTURE WORK 

      While our malware classification strategy worked 
very well on the old malware set, the results were much 
more moderate on the new malware set. This weaker 

result was almost certainly due to the difference in 
malware in the samples. Some malware families in the 
New Dataset require the user’s input along with an 
Internet connection in order to execute some of the in-
built functions, and so these functions would not have 
been extracted into our classification test using our 
method. In contrast, the boosted RF test gave reasonable 
results and this indicates that older classification 
techniques should not be abandoned en masse but that 
they could be adapted to cope with malware as it evolves. 
One such adaptation might be to include both old and 
new malware in the same test; another might be to 
combine the features for the datasets in other ways as, for 
example, in [12]. 

     On the other hand, the classification results of our 
second test, using a cumulative approach to distinguish 
malware from cleanware, show more consistent 
performance on the new dataset compared to the old 
dataset. However, the accuracy on the old dataset is 
better than on the new dataset. Therefore, it is obvious 
from our results that it is possible to develop a malware 
classification technique which can defend against future 
malware.  

Moreover, we have demonstrated in this paper that it 
is possible to develop an anti-malware technique which 
can maintain consistent performance with more 
advanced, future malware. The main approach we have 
used was to combine all feature types, derived from FLF, 
PSI and dynamic API calls and API parameters, into a 
single vector thus allowing the classifier algorithm to 
identify complex patterns which span multiple feature 
types. Our empirical study indicates that our strategy 
performed well on the new malware data set with a 5.4% 
drop in accuracy (both for the family classification 
approach and cumulative approach). Therefore it is 
expected that our proposed method can deal with 
malware generated in 2012 and beyond. However, it is 
difficult to predict whether the detection rate will 
maintain the same performance or not. In our future work 
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we will investigate the capabilities of our system on more 
challenging datasets. 
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