
IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018 465

Systematic Classification of Side-Channel Attacks:
A Case Study for Mobile Devices

Raphael Spreitzer , Veelasha Moonsamy, Thomas Korak, and Stefan Mangard

Abstract—Side-channel attacks on mobile devices have gained
increasing attention since their introduction in 2007. While tra-
ditional side-channel attacks, such as power analysis attacks
and electromagnetic analysis attacks, required physical pres-
ence of the attacker as well as expensive equipment, an
(unprivileged) application is all it takes to exploit the leak-
ing information on modern mobile devices. Given the vast
amount of sensitive information that are stored on smartphones,
the ramifications of side-channel attacks affect both the secu-
rity and privacy of users and their devices. In this paper, we
propose a new categorization system for side-channel attacks,
which is necessary as side-channel attacks have evolved sig-
nificantly since their scientific investigations during the smart
card era in the 1990s. Our proposed classification system allows
to analyze side-channel attacks systematically, and facilitates
the development of novel countermeasures. Besides this new
categorization system, the extensive survey of existing attacks
and attack strategies provides valuable insights into the evolv-
ing field of side-channel attacks, especially when focusing on
mobile devices. We conclude by discussing open issues and
challenges in this context and outline possible future research
directions.

Index Terms—Side-channel attacks, information leakage, clas-
sification, smartphones, mobile devices, survey, Android.

I. INTRODUCTION

S IDE-CHANNEL attacks exploit (unintended) information
leakage of computing devices or implementations to infer

sensitive information. Starting with the seminal works of
Kocher [1], Kocher et al. [2], Quisquater and Samyde [3], as
well as Mangard et al. [4], many follow-up papers considered
attacks against cryptographic implementations to exfiltrate
key material from smart cards by means of timing informa-
tion, power consumption, or electromagnetic (EM) emanation.

Manuscript received February 3, 2017; revised June 23, 2017 and October
4, 2017; accepted November 18, 2017. Date of publication December 4, 2017;
date of current version February 26, 2018. This work was supported in part
by the European Union’s Horizon 2020 Research and Innovation Programme
(HECTOR) under Grant 644052, and in part by the European Research
Council through the European Union’s Horizon 2020 Research and Innovation
Programme under Grant 681402. The work of V. Moonsamy was sup-
ported by the Technology Foundation STW (TYPHOON & ASPASIA)
through the Dutch Government under Project 13499. (Corresponding author:
Raphael Spreitzer.)

R. Spreitzer and S. Mangard are with the IAIK, Graz University of
Technology, 8010 Graz, Austria (e-mail: raphael.spreitzer@iaik.tugraz.at;
stefan.mangard@iaik.tugraz.at).

V. Moonsamy is with the Digital Security Group, Radboud University,
6525 Nijmegen, The Netherlands (e-mail: email@veelasha.org).

T. Korak was with the IAIK, Graz University of Technology, 8010 Graz,
Austria.

Digital Object Identifier 10.1109/COMST.2017.2779824

These “traditional” side-channel attacks required the attacker
to be in physical possession of the device to be able to
observe and learn the leaking information, yet different attacks
assumed different types of attackers and different levels of
invasiveness. More specifically, in order to systematically ana-
lyze side-channel attacks, they have been categorized along the
following two orthogonal axes:

1) Active vs passive: Depending on whether the attacker
actively influences the behavior of the device or only
passively observes leaking information.

2) Invasive vs semi-invasive vs non-invasive: Depending on
whether or not the attacker removes the passivation layer
of the chip, depackages the chip, or does not manipulate
the packaging at all.

However, with the era of cloud computing, the scope and
the scale of side-channel attacks have changed significantly in
the early 2000s. While early attacks required attackers to be in
physical possession of the device, newer side-channel attacks
such as cache-timing attacks [5]–[7] or DRAM row buffer
attacks [8] are conducted remotely by executing malicious
software in the targeted cloud environment. With the advent of
mobile devices, and in particular the plethora of embedded fea-
tures and sensors, even more sophisticated side-channel attacks
targeting smartphones have been proposed since around the
year 2010. For example, attacks allow to infer keyboard input
on touchscreens via sensor readings from native apps [9]–[11]
and websites [12], to deduce a user’s location via the power
consumption available from the proc filesystem (procfs) [13],
and also to infer a user’s identity, location, and diseases [14]
via the procfs.

Clearly, side-channel attacks have a long history and have
evolved significantly from attacks on specialized comput-
ing devices in the smart card era, to attacks on general-
purpose computing platforms in desktop computers and cloud
computing infrastructures, and finally to attacks on mobile
devices. Although side-channel attacks and platform secu-
rity are already well-studied topics, it must be noted that
smartphone security and associated privacy aspects differ from
platform security in the context of smart cards, desktop com-
puters, and cloud computing. Especially the following key
enablers enable more devastating attacks on mobile devices.

1) Always-on and portability: First and foremost, mobile
devices are always turned on and due to their mobility
they are carried around at all times. Thus, they are tightly
integrated into our everyday lives.

2) Bring your own device (BYOD): To decrease the num-
ber of devices carried around, employees use personal

1553-877X c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6844-292X


466 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

devices to process corporate data and to access corporate
infrastructure, which clearly indicates the importance of
secure mobile devices.

3) Ease of software installation: Due to the appifica-
tion [15] of mobile devices, i.e., where there is an app for
almost everything, additional software can be installed
easily by means of established app markets. Hence,
malicious apps can also be spread at a fast pace.

4) OS based on Linux kernel: Modern mobile operating
systems (OS), for example, Android, are based on the
Linux kernel. The Linux kernel, however, has initially
been designed for desktop machines and information or
features that are considered harmless on these platforms
turn out to be an immense security and/or privacy threat
on mobile devices (see [16]).

5) Features and sensors: Last but not least, these devices
include many features and sensors, which are not present
on traditional platforms. Due to the inherent nature of
mobile devices (always-on and carried around, connec-
tivity, inherent input methods, etc.), such features often
enable devastating side-channel attacks. Besides, these
sensors have also been used to attack external hardware,
such as keyboards and computer hard drives [17]–[19],
to infer videos played on TVs [20], and even to attack
3D printers [21], [22], which clearly demonstrates the
immense power of mobile devices.

Due to the above mentioned key enablers, a new area of
side-channel attacks has evolved and the majority of more
recent side-channel attacks are strictly non-invasive and rely
on the execution of malicious software in the targeted envi-
ronment. Considering these developments, we observe that the
classification system that has been established to analyze side-
channel attacks on smart cards does not meet these new attack
settings and strategies anymore. Hence, the existing classifi-
cation system does not allow a systematic categorization of
modern side-channel attacks, including side-channel attacks
on mobile devices.

In this work, we close this gap by establishing a new cate-
gorization system for modern side-channel attacks on mobile
devices. Therefore, we survey existing side-channel attacks
and identify commonalities between them. The gained insights
allow researchers to identify future research directions and to
cope with these attacks on a larger scale.

A. Motivation and High-Level Categorization

It is important to note that side-channel attacks against
smartphones can be launched by attackers who are in physical
possession of the devices and also by remote attackers who
managed to spread a seemingly innocuous application via an
existing app store. In some cases such side-channel attacks
can even be launched via websites and, thus, without relying
on the user to install an app. Nevertheless, in today’s appi-
fied software platforms where apps are distributed easily via
available app markets, an attack scenario requiring the user to
install a seemingly harmless game is entirely practical.

Interestingly, side-channel attacks on smartphones exploit
physical properties as well as software properties. A malicious

Fig. 1. Scope of attacks for smart cards, cloud infrastructures, and
smartphones.

application can exploit the accelerometer sensor [9], [10] (a
physical property) in order to attack the user input, which is
due to the inherent input method relying on touchscreens. In
addition, attacks can also be conducted by exploiting software
features (a logical property) provided by the Android API or
the mobile OS itself (see [13], [14]). This clearly indicates
that smartphones significantly broaden the scope as well as
the scale of attacks. Especially the appification [15] of mobile
platforms—i.e., where there is an app for everything—allows
to easily target devices and users at an unprecedented scale
compared to the smart card and the cloud setting.

Figure 1 illustrates a high-level categorization system for
side-channel attacks. We indicate the type of information
that is exploited (WHAT?) and how the adversary learns the
leaking information (HOW?) on the y-axis and x-axis, respec-
tively. Furthermore, we indicate how existing side-channel
attacks against smart cards, cloud computing infrastructures,
and smartphones relate to it, i.e., where existing attacks on
the respective platforms are located in this new categoriza-
tion system. For example, attackers exploit hardware-based
information leakage (physical properties) [4] of smart cards
by measuring the power consumption with an oscilloscope.
In this case, the attacker must be in possession of the device
under attack, which is indicated by the red cross-hatched area.

In contrast, side-channel attacks against cloud-computing
infrastructures do not (necessarily) require the attacker to
be physically present—unless we consider a malicious cloud
provider—as the attacker is able to remotely execute soft-
ware. Usually, these attacks exploit microarchitectural behav-
ior (such as cache attacks [5]–[7], [23]) or software features
(such as page deduplication [24]) in order to infer secret infor-
mation from co-located processes. Hence, the green dashed
area in Figure 1 is shifted to the right as these attacks mostly
rely on software execution, and it is also shifted to the area
below the x-axis as these attacks also target software features.

Even more manifold and diverse side-channel attacks have
been proposed for smartphones, which is indicated by the
larger area in Figure 1. These manifold side-channel attacks
mainly result from the five aforementioned key enablers. More
specifically, this area indicates that on smartphones we have to
deal with local attackers that exploit physical properties, but
also with attackers that execute software on the smartphone in



SPREITZER et al.: SYSTEMATIC CLASSIFICATION OF SIDE-CHANNEL ATTACKS: CASE STUDY FOR MOBILE DEVICES 467

order to exploit both physical properties as well as software
features (logical properties, such as the memory footprint [25]
or the data-usage statistics [14], [26]). In the remainder of this
paper we will refine this high-level categorization system in
order to systematically analyze modern side-channel attacks.

Although we do not explicitly focus on Android in this
paper, the majority of the existing papers deal with the Android
operating system. This reflects the trend that the research com-
munity focuses mostly on Android because of its openness
and also because it has the biggest market share among all
mobile operating systems. Gartner [27] reports that Android
sales (86% in Q1 2017) clearly outperform Apple iOS sales
(14% in Q1 2017).

B. Outline

The remainder of this paper is organized as follows.
Section II introduces background information in terms of
mobile operating systems, the basic notion of side-channel
attacks, and related work. In Section III, we discuss dif-
ferent types of information leaks and provide a definition
for software-only side-channel attacks. Furthermore, we intro-
duce our new categorization system for modern side-channel
attacks. We survey existing attacks in Sections IV–VI, and
we classify existing attacks according to our newly introduced
classification system in Section VII. We discuss existing coun-
termeasures in Section VIII. Finally, we discuss open issues,
challenges, and future research directions in Section IX and
conclude in Section X.

II. BACKGROUND

In this section, we introduce the basics of mobile security,
define the general notion of side-channel attacks, and we estab-
lish the boundaries between side-channel attacks and other
attacks on mobile devices. We stress that side-channel attacks
do not exploit specific software vulnerabilities of the OS or
any specific library, but instead exploit available information
that either leaks unintentionally or that is (in some cases) pub-
lished for benign reasons in order to infer sensitive information
indirectly. Finally, we also discuss related work.

A. A Primer on Smartphone Security

Mobile devices, such as tablet computers and smartphones,
are powerful multi-purpose computing platforms that enable
many different application scenarios. Third-party applications
can be easily installed in order to extend the basic function-
ality of these devices. Examples include gaming applications
that make use of the many different sensors, office applica-
tions, banking applications, and many more. These examples
clearly demonstrate that mobile devices are already tightly
integrated into our everyday lives, which leads to sensitive data
and information being stored and processed on these devices.

In order to protect this information properly, modern mobile
operating systems rely on two fundamental security concepts,
i.e., the concept of application sandboxing and the concept of
permission systems. For instance, on Android the underlying
Linux kernel ensures the concept of sandboxed applications.
Each application is assigned a user ID (UID), which allows

Fig. 2. An implementation produces unintended output as a byproduct.

the kernel to prevent applications from accessing resources of
other applications. The permission system on the other hand
allows applications to request access to specific resources out-
side of its sandbox, which typically includes resources that are
considered as being sensitive or privacy relevant. Android also
categorizes permissions depending on so-called protection lev-
els. The two important categories of Android permissions are
normal permissions and dangerous permissions, respectively.
While normal permissions are granted automatically during
the installation procedure, dangerous permissions must be
explicitly granted by the user. Other mobile operating systems
such as Apple’s iOS rely on similar protection mechanisms.

Besides these basic security concepts on the OS level,
applications themselves rely on cryptographic primitives, cryp-
tographic protocols, and dedicated security mechanisms to
protect sensitive resources. For instance, applications rely on
encryption primitives to protect sensitive information being
stored on the device or when transmitting data over the
Internet. Another example of a dedicated security mechanism
is a personal identification number (PIN) required to access a
specific service such as a banking application.

B. Side-Channel Attacks

Although the above mentioned concepts are secure (or are
typically considered as being secure) in theory, a specific
implementation of such a mechanism is not necessarily secure
in practice. Since side-channel attacks have been extensively
used to attack cryptographic implementations, let us consider
the following illustrative example. In an ideal world, an imple-
mentation of a cryptographic algorithm takes a specific input
and produces a specific (intended) output. For example, an
encryption algorithm takes the plaintext as well as crypto-
graphic key material to produce the ciphertext. However, in
practice, an implementation of an encryption algorithm usu-
ally also “outputs” unintended information as a byproduct of
the actual computations. Such unintended information leak-
age might be a different power consumption or a different
execution time due to instructions being conditionally exe-
cuted depending on the processed data (see Figure 2). Attacks
exploiting such unintended information leaks are denoted
as side-channel attacks and have been impressively used to
bypass or break protection mechanisms such as encryption
algorithms.

Subsequently, we discuss the general notion of side-channel
attacks. We distinguish between passive side-channel attacks,
as in the example above, and active side-channel attacks.



468 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

Fig. 3. General notion of passive (−→) and active (���) side-channel attacks.

Passive Side-Channel Attacks: The general notion of a pas-
sive side-channel attack can be described by means of three
main components, i.e., target, side channel, and attacker.
A target represents anything of interest to possible attack-
ers. During the computation or operation of the target, it
influences a side channel (physical or logical properties) and
thereby emits potential sensitive information. An attacker who
is able to observe these side channels potentially learns useful
information related to the actual computations or operations
performed by the target. Therefore, an attacker models possi-
ble effects of specific causes. Later on, careful investigations
of observed effects can then be used to learn information about
possible causes.

Active Side-Channel Attacks: An active attacker tampers
with the device or modifies/influences the targeted device
via a side channel, e.g., via an external interface or envi-
ronmental conditions. Thereby, the attacker influences the
computation/operation performed by the device in a way that
allows to bypass specific security mechanisms directly or that
leads to malfunctioning, which in turn enables possible attacks,
e.g., indirectly via the leaking side-channel information or
directly via the (erroneous) output of the targeted device.

Figure 3 depicts the general notion of side-channel attacks.
A target emits sensitive information as it influences specific
side channels. For example, physically operating a smartphone
via the touchscreen, i.e., the touchscreen input represents the
target, causes the smartphone to undergo specific movements
and accelerations in all three dimensions. In this case, one
possible side channel is the acceleration of the device (a
physical property), which can be observed via the embedded
accelerometer sensor and accessed by an app via the official
Sensor API.

The relations defined via the solid arrows, i.e., target −→
side channel −→ attacker, represent passive side-channel
attacks. The relations defined via the dashed arrows, i.e., target
��� side channel ��� attacker, represent active side-channel
attacks where the attacker actively influences/manipulates the
target via a side channel. Thereby, the attacker either tries (i)
to enforce behavior that allows to bypass security mechanisms
directly, or (ii) to observe leaking side-channel information
or the (sometimes erroneous) output of the targeted device.
Hence, a passive side-channel attack consists of steps (1) and
(2), whereas an active side-channel attack also includes steps
(3) and (4).

Differentiation From Other Attacks: Irrespective of whether
an attacker is passive or active, we only consider side-channel
attacks. Side-channel attacks do not exploit software bugs or
anomalies within the OS or apps that, for example, allow to
access the main communication channel directly. For example,

buffer overflow attacks allow to access the main communica-
tion channel directly (i.e., the main memory) and, thus, do not
represent side-channel attacks.

Similarly, we also do not consider other attacks that learn
information that is available from the main channel. For exam-
ple, Luzio et al. [28] exploited Wi-Fi probe-requests, which
contain the service set identifier (SSID) of preferred Wi-Fi
hotspots in clear. These probe-requests allow mobile devices to
determine nearby Wi-Fi hotspots in order to preferably connect
to already known hotspots. These attacks do not represent side-
channel attacks as the learned information is directly available
from the main channel.

Furthermore, we also do not survey covert channels where
two entities (e.g., processes) communicate over a channel that
is not explicitly provided by the platform or the operating
system. Although identified side channels can in general also
be used as a covert channel, i.e., as a means to stealthily
communicate between two processes whereby one process
influences the side channel and the other one observes it, we
do not explicitly survey covert channels such as [29] in this
paper. Nevertheless, our newly introduced classification system
can also be used to classify covert channels.

C. Related Surveys

In this section, we discuss surveys on mobile security,
as well as side-channel attacks on smart cards, PCs, cloud
infrastructures, and smartphones.

Surveys on Mobile Security: Most surveys on mobile secu-
rity primarily focused on malware in general, and many of
these surveys only mention side-channel attacks as a side node.
Enck [30] surveyed possible protection mechanisms beyond
the standard protection mechanisms provided by Android.
These include tools that analyze permissions and action strings
(within the Android Manifest) to assess the risk of Android
apps, policy-based approaches that allow a more fine-grained
protection of Android apps, as well as static and dynamic code
analysis tools to perform application analysis, which in turn
allows to detect malware.

Polla et al. [31] surveyed threats and vulnerabilities (i.e.,
botnets, Trojans, viruses, and worms) with a focus on work
published from 2004 until 2011. Suarez-Tangil et al. [32] and
Faruki et al. [33] continued this line of research for the period
from 2010 until 2013, and from 2010 until 2014, respectively.

Rashidi and Fung [34] surveyed techniques (e.g., based
on static and dynamic code analysis) to cope with mal-
ware on mobile devices and Sadeghi et al. [35] surveyed
tools and analysis techniques to identify malware. In addi-
tion, Sadeghi et al. provided a “survey of surveys” discussing
surveys and their main contributions in more detail. We
refer to their work for a more detailed investigation of mal-
ware analysis techniques and further literature on this topic.
Tam et al. [36] surveyed mobile malware analysis techniques
(static, dynamic, hybrid) as well as malware tactics to hinder
analysis (obfuscation).

Surveys on Side-Channel Attacks: The survey of
Tunstall [37] focused on smart card security, in particular
side-channel attacks against cryptographic algorithms.



SPREITZER et al.: SYSTEMATIC CLASSIFICATION OF SIDE-CHANNEL ATTACKS: CASE STUDY FOR MOBILE DEVICES 469

TABLE I
EXISTING SURVEYS AND WHAT THEY FOCUS ON. UPPER PART: SURVEYS ON MOBILE SECURITY. LOWER PART: SURVEYS ON SIDE-CHANNEL ATTACKS

Zander et al. [38] surveyed covert channels via computer
network protocols, and Biswas et al. [39] conducted an in-
depth study on network timing channels (remote timing side
channels) as well as in-system timing channels (focusing on
hardware-based timing channels such as cache attacks) on
commodity PCs. They surveyed timing channels according to
their suitability for covert channels, timing side channels, and
network flow watermarking (e.g., to de-anonymize Tor).

Regarding cloud computing platforms, Ge et al. [7] and
Szefer [40] surveyed microarchitectural attacks with a focus
on cache attacks. Ullrich et al. [41] focused on network-
based covert channels and network-based side channels in
cloud settings. Betz et al. [42] focused on covert chan-
nels and mentioned a few side-channel attacks in the cloud
setting.

The focus of our paper is on side-channel attacks against
mobile devices. Surveys about this topic are quite scarce
and consider specific types of side-channel attacks only.
Xu et al. [43] surveyed attacks and defenses on Android at a
broader scale and thereby provide a comprehensive overview
of the research landscape. They considered system privilege
escalation, issues in the permission model, side channels and
covert channels (a high-level overview of exploits consid-
ering the accelerometer, the CPU cache, and the procfs),
feature abuses, malware detection, and app repackaging.
Hussain et al. [44] and Nahapetian [45] surveyed sensor-based
keylogging attacks. However, a systematic survey and classi-
fication of all existing categories of side-channel attacks on
mobile devices does not exist so far. Hence, we close this gap
in this paper.

Table I summarizes the main focus of the above discussed
surveys and provides references for the interested reader.

III. TAXONOMY OF SIDE CHANNELS

In this section, we discuss the different types of information
leaks, how the key enablers presented in Section I enable so-
called software-only attacks on today’s smartphones, and the
generic adversary model followed by software-only attacks.
Finally, we present our new categorization system.

Fig. 4. Types of side-channel information leaks.

A. Types of Information Leaks

Considering side-channel attacks on mobile devices, we
identify two types of information leaks, namely unintended
information leaks and information published on purpose.
Figure 4 depicts these two types of information leaks.
Informally, side-channel attacks exploiting unintended infor-
mation leaks can be considered as “traditional” side-channel
attacks since this category has already been extensively ana-
lyzed during the smart card era [4]. For example, unintended
information leaks include the execution time, the power con-
sumption, or the electromagnetic emanation of a computing
device. This type of information leak is considered as unin-
tended because smart card designers and developers did not
plan to leak the timing information or power consumption of
computing devices on purpose.

The second category of information leaks (referred to as
information published on purpose) is mainly a result of
the ever-increasing number of features provided by today’s
smartphones. In contrast to unintended information leaks, the
exploited information is published on purpose and for benign
reasons. For instance, specific features require the device to
share (seemingly harmless) information and resources with
apps running in parallel on the system. This information is
either shared by the OS directly (e.g., via the procfs) or
through the official Android API.1 Although this information

1In the literature, some of the information leaks through the procfs are also
denoted as storage side channels [46].



470 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

is extensively used by many legitimate applications for benign
purposes, it sometimes turns out to leak sensitive information
and, thus, leads to devastating side-channel attacks.

Many investigations impressively demonstrated that seem-
ingly harmless information allows to infer sensitive informa-
tion that is protected by dedicated security mechanisms, such
as permissions. Examples of such seemingly harmless infor-
mation are the memory footprint of an application as well
as the data-usage statistics that keep track of the amount of
incoming and outgoing network traffic. Both, the memory foot-
print [25] as well as the data-usage statistics [26], allow to
infer a user’s visited websites. The fundamental design weak-
ness of assuming information as being innocuous (e.g., the
memory footprint or the data-usage statistics) means that it is
not protected by dedicated permissions.

Furthermore, the second category seems to be more dan-
gerous in the context of smartphones as new features are
frequently added and new software interfaces allow to access
an unlimited number of unprotected resources. Even devel-
opers taking care of secure implementations in the sense of
unintended information leaks, e.g., by providing constant-time
crypto implementations and taking care of possible soft-
ware vulnerabilities such as buffer overflow attacks, inevitably
leak sensitive information due to shared resources, the OS,
or the Android API. Additionally, the provided software
interfaces to access information and shared resources enable
so-called software-only attacks, i.e., side-channel attacks that
only require the execution of software. This clearly represents
an immense threat as these attacks (1) do not exploit any
obvious software vulnerabilities, (2) do not rely on specific
privileges or permissions, and (3) can be conducted remotely
via seemingly harmless apps or even websites.

B. Software-Only Side-Channel Attacks

Irrespective of whether a physical property (e.g., execu-
tion time [6] and power consumption [13]) or a logical
property (e.g., memory footprint [25] and data-usage statis-
tics [14], [26]) are exploited, many of these information leaks
can be exploited by means of software-only attacks. More
specifically, software-only attacks exploit leaking information
without additional equipment, which was required for tradi-
tional side-channel attacks. For example, an oscilloscope is
necessary to measure the power consumption of a smart card
during its execution, or an EM probe is necessary to mea-
sure the EM emanation. In contrast, today’s smartphones allow
an impressive number of side-channel leaks to be exploited
via software-only attacks. Besides, an attack scenario that
requires the user to install an (unprivileged) application—
i.e., an addictive game—is entirely reasonable in an appified
ecosystem.

For side-channel attacks in general, it does not matter
whether the leaking information is collected via dedicated
equipment or whether an unprivileged app collects the leaking
information directly on the device under attack (software-only
attacks). Interestingly, however, the immense amount of infor-
mation published on purpose also allows to observe physical
properties of the device as well as physical interactions with

the device. Consequently, software-only side channel attacks
have gained increasing attention in the last few years and
impressive attacks are being continuously published.

Runtime-Information Gathering Attacks: Zhang et al. [16]
coined the term runtime-information gathering (RIG) attack,
which refers to attacks that require a malicious app to run
side-by-side with a victim app on the same device in order
to collect runtime information of the victim. According to
Zhang et al. [16, p. 1] “(RIG) here refers to any malicious
activities that involve collecting the data produced or received
by an app during its execution, in an attempt to directly steal or
indirectly infer sensitive user information”. The crucial point
in their definition is the distinction between directly stealing
and indirectly inferring sensitive information. Inferring sensi-
tive information indirectly is done by means of side-channel
attacks. Hence, this generic class of attacks also includes a
subset of side-channel attacks, especially side-channel attacks
that can be launched via software-only attacks. However,
RIG attacks also include attacks that we do not consider as
side-channel attacks, i.e., attacks that directly steal sensitive
information. For example, RIG attacks also include attacks
where apps request permissions which are exploited for (more
obvious) attacks such as requesting the permission to access
the microphone in order to eavesdrop on phone conversations.

Screenmilker [47]—an attack exploiting ADB2 capabili-
ties to take screenshots programmatically—is also considered
being a RIG attack. We do not consider such attacks as side-
channel attacks because these attacks exploit implementation
flaws, i.e., the exploited screenshot tool does not implement
any authentication mechanism and hence any application can
take screenshots programmatically. Similarly, we do not con-
sider buffer overflow attacks as side-channel attacks because
buffer overflow attacks represent a software vulnerability and
allow to access the main channel directly, for example, by
reading the main memory directly. Side-channel attacks, how-
ever, attack targets that are secure from a software perspective
and still leak information unintentionally.

Figure 5 illustrates the new type of software-only side-
channel attacks that allow to exploit both, physical properties
as well as software features (logical properties), without
additional equipment. Attacks exploiting information leaks
resulting from hardware components, e.g., the power consump-
tion, are classified as (physical) attacks exploiting physical
properties. Attacks exploiting information leaks resulting from
software components, e.g., statistics about network traffic, are
classified as (logical) attacks exploiting logical properties.

As software-only attacks also rely on software being exe-
cuted side-by-side with the victim application, software-only
attacks are a sub-category of RIG attacks. It should be noted
that physical attacks on smartphones might still rely on dedi-
cated hardware and some logical attacks can also be conducted
without running software on the device under attack. Such
attacks are covered by the non-overlapping areas of “phys-
ical attacks” and “logical attacks” in Figure 5. However,
physical attacks that cannot be conducted by running software

2The Android Debug Bridge (ADB) is a command line tool that allows to
execute privileged commands on devices where USB debugging is activated.



SPREITZER et al.: SYSTEMATIC CLASSIFICATION OF SIDE-CHANNEL ATTACKS: CASE STUDY FOR MOBILE DEVICES 471

Fig. 5. SW-only side-channel attacks allow to exploit physical as well as
logical properties.

on the device are more targeted attacks as they require
attackers to be in physical presence of the device.

C. Adversary Model and Attack Scenario

In contrast to traditional attacks that require an attacker to
have the device under physical control or to be physically
present with the victim, the adversary model for most (exist-
ing) side-channel attacks on smartphones shifted the scope
to remote software execution by means of apps or websites.
This also increases the scale of these attacks. While traditional
side-channel attacks targeted only a few devices, modern side-
channel attacks target possibly millions of devices or users at
the same time. With this general overview of the adversary
model in mind, most software-only attacks usually consider
the following two-phase attack scenario for passive attacks.

Training Phase: In the training phase, the attacker “pro-
files” actions or events of interest, either during an online
phase on the attacked device or during an offline phase in ded-
icated environments. Sometimes the training phase includes
the training of a machine-learning model such as a supervised
classifier. More abstractly, the attacker builds “templates”
based on events of interest. In addition, the attacker crafts an
app (or website) that ideally does not require any permissions
or privileges in order to avoid raising the user’s suspicion. This
app is used in the attack phase to gather leaking information.

Attack Phase: The attack phase usually consists of three
steps. (1) A malicious application—that is hidden inside a pop-
ular app—is spread via existing app markets. After installation,
this malicious app waits in the background until the targeted
app/action/event starts and then (2) it observes the leaking
side-channel information. Based on the gathered information,
(3) it employs the previously established model or templates
to infer secret information. Depending on the complexity of
the inference mechanism, e.g., the complexity of the machine-
learning classifier, the gathered side-channel information could
also be sent to a remote server, which then performs the heavy
computations to infer the secret information.

D. A New Categorization System

Based on our observations we propose a new categorization
system as depicted in Figure 6. More specifically, we classify
side-channel attacks along three axes.

1) Passive vs active: This category distinguishes between
attackers who passively observe leaking side-channel
information and attackers who also actively influence

the target via any side channel. For instance, an attacker
can manipulate the target, its input, or its environment
via any side channel in order to subsequently observe
leaking information via abnormal behavior of the target
(see [4]) or to bypass security mechanisms.

2) Physical properties vs logical properties: This cate-
gory classifies side-channel attacks according to the
exploited information, i.e., depending on whether the
attack exploits physical properties (hardware) or log-
ical properties (software features). Physical properties
include the power consumption, the electromagnetic
emanation, or the physical movements of a smartphone
during the operation. Logical properties include usage
statistics provided by the operating system, such as
the data-usage statistics or the memory footprint of an
application.

3) Local attackers vs vicinity attackers vs remote attack-
ers: Side-channel attacks are classified depending on
whether or not the attacker must be in physical prox-
imity/vicinity of the target. Local attackers clearly must
be in (temporary) possession of the device or at least
in close proximity. Depending on whether the adversary
also needs to remove the package in order to access
the chip, we classify local attackers into attackers that
need access to the chip or only the device itself. Vicinity
attackers are able to wiretap or eavesdrop the network
communication of the target or to be somewhere in the
vicinity of the target. Remote attackers only rely on soft-
ware execution on the targeted device, e.g., either by
means of executing software on the targeted device or
by means of websites. Clearly, the scale increases sig-
nificantly for these three attackers as a local attacker
relies on stronger assumptions than a remote attacker.
Especially the immense number of software-only attacks
(that allow to conduct side-channel attacks remotely)
stress the need for this category.

Subsequently, we briefly survey existing attacks according
to our new classification system. Although the focus of this
paper is on side-channel attacks against mobile devices, we
also discuss attacks that have been applied in the smart card or
desktop/cloud setting, as today’s smartphones are vulnerable to
(all or most of the) existing side-channel attacks against these
platforms as well. As mentioned before, we do not explicitly
focus on Android devices, but the majority of existing papers
investigate side-channel attacks on Android.

We start with local side-channel attacks in Section IV, con-
tinue with vicinity side-channel attacks in Section V, and
finally we discuss remote side-channel attacks in Section VI.
Each of these sections is further divided into passive attacks
and active attacks. Note that this structure reflects our
proposed classification system. However, for the sake of read-
ability the structure of the subsections does not reflect the
categorization of physical properties and logical properties.

IV. LOCAL SIDE-CHANNEL ATTACKS

In this section, we survey side-channel attacks that require
a local adversary. Some of these attacks will show that the



472 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

Fig. 6. Proposed classification system for side-channel attacks: (1) passive vs active, (2) physical properties vs logical properties, (3) local attackers vs
vicinity attackers vs remote attackers.

transition between local attacks and vicinity attacks is seamless
as the distance between the victim (device) and the attacker
can be increased, especially in case of some passive attacks.

A. Passive Attacks

We start with traditional side-channel attacks that aim to
break insecure cryptographic implementations (of mathemati-
cally secure primitives). Besides, we discuss attacks that target
the user’s interaction with the device as well as the user’s input
on the touchscreen, i.e., attacks that result from the inherent
nature of mobile devices.

Power Analysis Attacks: The actual power consumption of a
computing device or implementation depends on the processed
data and the executed instructions. Power analysis attacks
exploit this information leak to infer sensitive information. As
the name suggests, the power consumption, typically measured
as the voltage drop across a resistor inserted in the supply line,
serves as the side channel. State-of-the-art printed circuit board
designs (PCB-designs), including multi-layer routing as well
as surface mounted devices (SMD), and packaging techniques
(e.g., ball-grid array) make it hard to access the appropriate
power supply lines in modern smartphones without permanent
modifications. Therefore, in contrast to smart cards, measuring
the power consumption became less relevant for side-channel
attacks targeting smartphones.

Depending on whether a single measurement trace or
multiple traces are required, we distinguish between simple
power analysis (SPA) attacks and differential power analysis
(DPA) attacks, as defined by Kocher et al. [2]. SPA attacks
rely on the interpretation of power traces in order to reveal,
for example, the sequence of executed instructions, which
allows to break implementations where the executed instruc-
tions depend on secret data. However, the power consumption
also depends on the processed data, although the variations
are smaller. Therefore, DPA attacks rely on statistical investi-
gations of multiple traces in order to infer information about
the processed data.

Attacks: Messerges et al. [48] exploited the power con-
sumption of a smart card to attack the Data Encryption
Standard (DES) algorithm. Hardly any side-channel attacks

using a similar setup for measuring the power consumption
targeting smartphones are published. Nevertheless, a coarse-
grained power-consumption monitoring of smartphones allows
to identify running apps, as demonstrated by Yan et al. [49].

Electromagnetic Analysis Attacks: Another way to attack the
leaking power consumption of computing devices is to exploit
electromagnetic emanations, which are usually easier to obtain
since the power line cannot be accessed directly in general.
Irrespective of whether the power trace is obtained directly via
the power line or via electromagnetic emanations, these attacks
are usually denoted as differential power analysis attacks. In
this context it is also worth to mention that depending on the
used equipment (EM probes for capturing the electromagnetic
emanation), targeting a specific location above the chip can
improve the signal-to-noise ratio of the measurements. As a
result of taking advantage of spatial information, the num-
ber of required measurements for a successful attack can be
decreased.

Attacks: Traditional side-channel attacks exploiting the elec-
tromagnetic emanations of smart cards have also been applied
on mobile devices. Gebotys et al. [50] demonstrated attacks
on software implementations of the Advanced Encryption
Standard (AES) and Elliptic Curve Cryptography (ECC) on
Java-based PDAs. Later on, Nakano et al. [51] attacked ECC
and RSA implementations of the default crypto provider (JCE)
on Android smartphones, Goller and Sigl [52] attacked RSA
implementations on Android, and Belgarric et al. [53] attacked
the Elliptic Curve Digital Signature Algorithm (ECDSA)
implementation of Android’s Bouncy Castle. In a similar
manner, Genkin et al. [54] attacked the OpenSSL imple-
mentation of ECDSA on Android and the CommonCrypto
implementation of ECDSA on iOS, respectively.

Differential Computation Analysis: The basic idea of white-
box crypto implementations is to embed the secret key into the
software implementation in a way that prevents an attacker
from extracting the key, even in case the adversary has access
to the source code itself. Therefore, the key and the algorithm
itself are merged such that the key is hidden inside the code
and cannot be easily separated. The white-box attack model
assumes that the adversary has full control over the device and
the execution environment.



SPREITZER et al.: SYSTEMATIC CLASSIFICATION OF SIDE-CHANNEL ATTACKS: CASE STUDY FOR MOBILE DEVICES 473

Attacks: Bos et al. [55] showed that binary instrumenta-
tion can be used to observe and control the intermediate
state of white-box crypto implementations. Thereby, the instru-
mentation allows to precisely monitor the execution of the
program and the observation of, e.g., the intermediate state
and read/write accesses to memory, allow to profile pro-
gram behavior. Based on the similarity to DPA attacks,
Bos et al. denoted these attacks as differential computa-
tion analysis (DCA) attacks. Nevertheless, in contrast to
DPA attacks, DCA attacks do not need to deal with any
measurement noise.

Although attacks against white-box crypto implementations
have not been applied on mobile devices so far, such an attack
scenario works for these devices as well.

Smudge Attacks: The most common input method on mobile
devices is the touchscreen, i.e., users tap and swipe on the
screen with their fingers. Due to the inherent nature of touch-
screens, users always leave residues in the form of fingerprints
and smudges on the screen.

Attacks: Aviv et al. [56] pointed out that side-channel
attacks can be launched due to specific interactions with the
smartphone or touchscreen-based devices in general. More
specifically, forensic investigations of smudges (oily residues
from the user’s fingers) on the touchscreen allow to infer
unlock patterns. Even after cleaning the phone or placing the
phone into the pocket, smudges seem to remain most of the
time. Hence, smudges are quite persistent which increases
the threat of smudge attacks. Follow-up work considering
an attacker who employs fingerprint powder to infer key-
pad inputs has been presented by Zhang et al. [57] and also
an investigation of the heat traces—left on the screen due
to finger touches—by means of thermal cameras has been
performed [58].

Shoulder Surfing and Reflections: Touchscreens of mobile
devices optically/visually emanate the displayed content. Often
these visual emanations are reflected by objects in the envi-
ronment, such as sunglasses and tea pots [59], [60].

Attacks: Maggi et al. [61] observed that touchscreen input
can be recovered by monitoring the visual feedback (pop-up
characters) on soft keyboards during the user input. Therefore,
they rely on cameras that are pointed directly on the targeted
screen. Raguram et al. [62], [63] observed that reflections,
e.g., on the user’s sunglasses, can also be used to recover
input typed on touchscreens. However, the attacker needs to
point the camera, used to capture the reflections, directly on
the targeted user. Subsequently, they rely on computer vision
techniques and machine learning techniques to infer the user
input from the captured video stream. Xu et al. [64] extended
the range of reflection-based attacks by considering reflections
of reflections. Although, they do not rely on the visual feed-
back of the soft keyboard but instead track the user’s fingers
on the smartphone while interacting with the device.

By increasing the distance between the attacker and the
victim, e.g., by relying on more expensive and sophisticated
cameras, some of these attacks might as well be considered
as vicinity attacks.

Hand/Device Movements: Many input methods on various
devices rely on the user operating the device with her hands

and fingers. For instance, users tend to hold the device in their
hands while operating it with their fingers.

Attacks: Similar to reflections, Shukla et al. [65] proposed
to monitor hand movements as well as finger movements—
without directly pointing the camera at the targeted screen—in
order to infer entered PIN inputs. Sun et al. [66] moni-
tored the backside of tablets during user input and detected
subtle motions that can be used to infer keystrokes, while
Yue et al. [67] proposed an attack where the input on touch-
enabled devices can be estimated from a video of a victim
tapping on a touch screen.

Again, by increasing the distance between the attacker and
the victim, these attacks might also be considered as vicinity
attacks, which demonstrates the seamless transition from local
attacks to vicinity attacks for these types of attacks.

B. Active Attacks

An active attacker also manipulates the target, its input,
or its environment in order to subsequently observe leaking
information via abnormal behavior of the target or to bypass
security mechanisms directly. While the transition between
local and vicinity attackers is seamless in case of passive
attacks, active attacks always assume that the attacker is in
possession of the device (at least temporary).

Active attacks against cryptographic implementations date
back to the works of Boneh et al. [68] (a.k.a. Bellcore attack)
who attacked RSA crypto systems, especially implementations
based on the Chinese Remainder Theorem (CRT), by relying
on random hardware faults that result in the output of an erro-
neous signature. Later, Biham and Shamir [69] coined the term
differential fault analysis (DFA) attacks and demonstrated that
the introduction of faults and observing differences in the out-
put ciphertext allow to recover the secret key of symmetric
primitives. The basic idea of these attacks is to solve algebraic
equations based on erroneous outputs (and valid outputs).

Clock/Power Glitching: Variations of the clock signal, e.g.,
overclocking, have been shown to be an effective method for
fault injection on embedded devices in the past. One prerequi-
site for this attack is an external clock source. Microcontrollers
applied in smartphones typically have an internal clock genera-
tor, making clock tampering difficult. Besides clock tampering,
intended variations of the power supply represent an additional
method for fault injection. With minor hardware modifi-
cations, power-supply tampering can be applied on most
microcontroller platforms.

Attacks: In [70] it is shown how to disturb the program exe-
cution of an ARM CPU on a Raspberry PI by underpowering,
i.e., the supply voltage is set to ground (GND) for a short
time. Due to the relatively easy application on modern micro-
controllers, voltage-glitching attacks pose a serious threat for
smartphones if attackers have physical access to the device.
For instance, O’Flynn [71] demonstrated that by shorting the
power supply of an off-the-shelf Android smartphone, a fault
can be introduced that leads to an incorrect loop count.

Electromagnetic Fault Injection (EMFI): Transistors placed
on microchips can be influenced by electromagnetic emana-
tion. EMFI attacks take advantage of this fact. These attacks



474 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

use short (in the range of nanoseconds), high-energy EM
pulses to, e.g., change the state of memory cells, resulting in
erroneous calculations. In contrast to voltage glitching, where
the injected fault is typically global, EMFI allows to target spe-
cific regions of a microchip by precisely placing the EM probe,
e.g., on the instruction memory, the data memory, or CPU reg-
isters. Compared to optical fault injection, EMFI attacks do not
necessarily require a decapsulation of the chip, which makes
them more practical.

Attacks: Ordas et al. [72] reported successful EMFI attacks
targeting the AES hardware module of a 32 bit ARM proces-
sor. Rivière et al. [73] used EMFI attacks to force instruction
skips and instruction replacements on modern ARM microcon-
tollers. Considering the fact that ARM processors are applied
in modern smartphones, EMFI attacks represent a serious
threat for such devices.

Laser/Optical Faults: Optical fault attacks using a laser
beam are among the most-effective fault-injection techniques.
These attacks take advantage of the fact that a focused laser
beam can change the state of a transistor on a microcontroller,
resulting in, e.g., bit flips in memory cells. Compared to other
fault-injection techniques (voltage glitching, EMFI), the effort
for optical fault injection is high. First, decapsulation of the
chip is a prerequisite in order to access the silicon with the
laser beam. Second, finding the correct location for the laser
beam to produce exploitable faults is also not a trivial task.

Attacks: First optical fault-injection attacks targeting an
8-bit microcontroller have been published by Skorobogatov
and Anderson [75] in 2002. Inspired by their work, sev-
eral optical fault-injection attacks have been published in
the following years, most of them targeting smart cards or
low-resource embedded devices (e.g., [76] and [77]). The
increasing number of metal layers on top of the silicon,
decreasing feature size (small process technology), and the
high decapsulation effort make optical fault injection difficult
to apply on modern microprocessors used in smartphones.

Temperature Variation: Operating a device outside of its
specified temperature range allows to cause faulty behavior.
Heating up a device above the maximum specified temperature
can cause faults in memory cells. Cooling down the device has
an effect on the speed RAM content fades away after power
off (remanence effect of RAM).

Attacks: Hutter and Schmidt [78] presented heating fault
attacks targeting an AVR microcontroller. They prove the prac-
ticability of this approach by successfully attacking an RSA
implementation on named microcontroller. FROST [79], on
the other hand, is a tool to recover disc encryption keys from
RAM on Android devices by means of cold-boot attacks. Here
the authors take advantage of the increased time data in RAM
remains valid after power off due to low temperature.

Differential Computation Analysis: As already mentioned
above, the white-box model assumes that the attacker has
full control over the execution environment. This also means
that the attacker can produce erroneous or faulty outputs by
manipulating intermediate values during the computation.

Attacks: Sanfelix et al. [74] demonstrated that attackers in
the white-box model can also perform fault injection attacks.
As the attacker has full control over the execution environment

and the executed binary, she can also manipulate data during
the program execution or manipulate the control flow of the
execution. Similar to other fault attacks, the idea is to observe
differences between normal outputs and erroneous outputs of
the binary in order to break the cryptographic implementations.

NAND Mirroring: Data mirroring refers to the replication
of data storage between different locations. Such techniques
are used to recover critical data after disasters but also allow
to restore a previous system state.

Attacks: The Apple iPhone protects a user’s privacy by
encrypting the data. Therefore, a passcode and a hardware-
based key are used to derive various keys that can be used
to protect the data on the device. As a dedicated hardware-
based key is used to derive these keys, brute-force attempts
must be done on the attacked device. Furthermore, brute-force
attempts are discouraged by gradually increasing the waiting
time between wrongly entered passcodes up to the point where
the phone is wiped. In response to the Apple vs FBI case,
Skorobogatov [80] demonstrated that NAND mirroring can be
used to reset the phone state and, thus, can be used to brute-
force the passcode. Clearly, this approach also represents an
active attack as the attacker actively influences (resets) the
state of the device.

C. Overview

Table II summarizes the discussed attack categories and
the targeted information. In terms of targets, we identified
cryptographic implementations (crypto), the program flow of
applications (which sometimes also allows to attack crypto
because different branches might be executed depending on
specific key bits), application inference (inference of the exe-
cuted application), and user input. An attack category not
targeting specific information (yet), which is indicated by an ✗,
represents a possible gap that might be investigated in future
research. For example, power analysis attacks might allow to
target user input, such as keystrokes or even actual characters,
and shoulder surfing and reflection attacks might well allow
to infer running applications. However, for some attacks it is
(highly) unlikely that they will work against specific targets.
For example, attacking cryptographic algorithms by means of
smudge attacks is unlikely to work.

V. VICINITY SIDE-CHANNEL ATTACKS

In this section, we survey attacks where the attacker must be
in the vicinity of the targeted user/device, i.e., attacks where
the attacker compromises, for example, any infrastructure
facility within the user’s environment.

A. Passive Attacks

Network Traffic Analysis: In general, the encryption of mes-
sages transmitted between two parties only hides the actual
content, while specific meta data such as the overall amount
of data is not protected. This meta data allows to infer sen-
sitive information about the content and the communicating
parties.

Attacks: Network traffic analysis has been extensively stud-
ied in the context of website fingerprinting attacks. These



SPREITZER et al.: SYSTEMATIC CLASSIFICATION OF SIDE-CHANNEL ATTACKS: CASE STUDY FOR MOBILE DEVICES 475

TABLE II
OVERVIEW OF LOCAL SIDE-CHANNEL ATTACKS AND CORRESPONDING TARGETS. ✓ AND ✗ INDICATE WHETHER

OR NOT A SPECIFIC ATTACK HAS BEEN PERFORMED ON THE CORRESPONDING TARGET

attacks [82]–[86] wiretap network connections and observe
traffic signatures, e.g., unique packet lengths, inter-packet
timings, etc., to infer visited websites and even work in
case the traffic is routed through Tor. While most of these
attacks target the network communication in general, attacks
explicitly targeting mobile devices also exist. For instance,
Stöber et al. [88] assumed that an adversary eavesdrops on
the UMTS transmission and showed that smartphones can be
fingerprinted based on the background traffic of installed apps.
Conti et al. [87] considered an adversary who controls Wi-Fi
access points near the targeted device, which allows to infer
specific app actions such as posting Facebook status messages.
In similar settings, traffic analysis techniques allow to finger-
print specific apps as well as actions performed in specific
apps [93]–[98].

While the above presented attacks exploit logical properties,
i.e., the fact that encrypted packets do not hide meta data,
Schulz et al. [99] exploited the EM emanation of Ethernet
cables (hardware properties), which allowed them to observe
parts of the transmitted Ethernet frames.

USB Power Analysis: Due to the inherent usage patterns of
mobile devices, users are constantly in the need to charge their
devices, which is why public USB charging stations have been
set up. Similar to power analysis attacks, modified charging
stations can be used to collect power traces that allow to infer
sensitive information about users and mobile devices.

Attacks: The identification (or localization) of specific users
is considered a privacy risk due to the possibility of tracking
individuals. Conti et al. [90] demonstrated that wall-socket
smart meters that capture the power consumption of plugged
devices can be used to identify users/notebooks. Although they
demonstrated their attack on notebooks, it is likely that the
same attack works for smartphones as well. In a similar setting,
Yang et al. [89] demonstrated that visited websites can be
inferred by power traces collected via USB charging stations.
Such attacks even work if dedicated protection mechanisms,
e.g., adapters that block data pins on USB cables, are in place.

Wi-Fi Signal Monitoring: Wi-Fi devices continuously mon-
itor the wireless channel (channel state information (CSI)) to
effectively transmit data. This is necessary as environmental
changes cause the CSI values to change.

Attacks: Ali et al. [100] observed that even finger motions
impact wireless signals and cause unique patterns in the

time-series of CSI values. In a setting with a sender (notebook)
and a receiver (Wi-Fi router), they showed that keystrokes on
an external keyboard cause distortions in the Wi-Fi signal.
They infer entered keys by monitoring these changes of the
CSI values. Later on, Zhang et al. [91] inferred unlock patterns
on smartphones via a notebook that is connected to the wire-
less hotspot provided by the smartphone. Li et al. [92] further
improved these attacks by considering an attacker controlling
only a Wi-Fi access point. They infer the PIN input on smart-
phones and also analyze network packets to determine when
the sensitive input starts.

B. Active Attacks

Besides passively observing leaking information, vicinity
attacks can be improved by considering active attackers as
demonstrated by the following example.

Network Traffic Analysis: Network traffic analysis has
already been discussed in the context of passive side-channel
attacks. Active attackers learn additional information by
actively influencing transmitted packets, e.g., by delaying
packets.

Attacks: He et al. [81] demonstrated that an active attacker,
e.g., represented by an Internet Service Provider (ISP), could
delay HTTP requests from Tor users in order to increase the
performance of website fingerprinting attacks. The idea is that
instead of observing the generated traffic for all resources on
a webpage in parallel, i.e., the response packets from multiple
requests in parallel overlap, an attacker delays the packet
requesting a resource until the response from the previous
request has been fully retrieved.

C. Overview

Table III summarizes the discussed attack categories and the
targeted information. The identified targets are the inference
of visited websites, application inference (or specific actions
within applications), identification of users and devices, and
user input. Again an attack category not targeting specific
information (indicated by an ✗) represents a possible gap that
might be closed in future research. For example, USB power
analysis attacks might allow to target user input.



476 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

TABLE III
OVERVIEW OF VICINITY SIDE-CHANNEL ATTACKS AND CORRESPONDING TARGETS. ✓ AND ✗ INDICATE WHETHER OR

NOT A SPECIFIC ATTACK HAS BEEN PERFORMED ON THE CORRESPONDING TARGET

VI. REMOTE SIDE-CHANNEL ATTACKS

The attacks presented in this section can be categorized
as software-only attacks. In contrast to the local side-channel
attacks as well as the vicinity side-channel attacks presented in
the previous sections, these attacks neither require the attacker
to be in the proximity nor in the vicinity of the targeted user.
Hence, these attacks can be executed remotely and target a
much larger scale since the victim user installed a malicious
application on her device.

A. Passive Attacks

Linux-inherited procfs Leaks: Linux releases “accounting”
information that is considered as being harmless via the procfs.
This includes, for example, the memory footprint (total virtual
memory size and total physical memory size) of each applica-
tion via /proc/[pid]/statm, the CPU utilization times
via /proc/[pid]/stat, the number of context switches
via /proc/[pid]/status, but also system-wide informa-
tion such as interrupt counters via /proc/interrupts and
context switches via /proc/stat.

Attacks: Jana and Shmatikov [25] observed that the memory
footprint of the browser correlates with the rendered web-
site. Thus, by monitoring the memory footprint they inferred a
user’s browsing behavior (browser history), which represents
sensitive information and is normally protected by a dedicated
permission. Later on, Chen et al. [101] exploited this informa-
tion to detect Activity transitions within Android apps. They
observed that the shared memory size increases by the size
of the graphics buffer in both processes, i.e., the app process
and the window compositor process (SurfaceFlinger). These
increases occur due to the inter-process communication (IPC)
between the app and the window manager. Besides, they also
considered CPU utilization and network activity in order to
infer the exact activity later on.

Similar to the memory footprint of applications, the procfs
also provides system-wide information about the number of
interrupts and context switches. Again, this information is con-
sidered as being innocuous and is, thus, published on purpose
and is accessible without any permission. Simon et al. [11]
exploited this information to infer text entered via swipe input
methods. More specifically, they observed that the number of
interrupts and context switches correlates with the user’s fin-
ger movements across the keyboard when transitioning from
letter to letter. Diao et al. [102] presented two attacks to infer
unlock patterns and the app running in the foreground. The
information leaks exploited were gathered from interrupt time
series of the device’s touchscreen controller. Besides, also the
power consumption is released via the procfs. Yan et al. [49]

showed that the power consumption allows to infer the number
of entered characters on the soft keyboard.

Data-Usage Statistics: Android keeps track of the amount
of incoming and outgoing network traffic on a per-application
basis. These statistics allow users to keep an eye on the data
consumption of any app and can be accessed without any
permission.

Attacks: Data-usage statistics are captured with a fine-
grained granularity, i.e., packet lengths of single TCP packets
can be observed, and have already been successfully exploited.
Zhou et al. [14] demonstrated that by monitoring the data-
usage statistics an adversary can infer sensitive information
of specific apps. They were able to infer disease conditions
accessed via WebMD, and the financial portfolio via Yahoo!
Finance. In addition, they also showed how to infer a user’s
identity by observing the data-usage statistics of the Twitter
app and exploiting the publicly available Twitter API.

Later, it has been shown that the data-usage statistics can
also be exploited to infer a user’s browsing behavior [26].
The fine-grained statistics of incoming and outgoing network
packets allow to fingerprint websites, which even works in
case the traffic is routed through the anonymity network Tor.

Page Deduplication: To reduce the overall memory footprint
of a system, (some) operating systems3 search for identical
pages within the physical memory and merge them—even
across different processes—which is called page deduplica-
tion. As soon as one process intends to write onto such
a deduplicated page, a copy-on-write fault occurs and the
process gets its own copy of this memory region again.

Attacks: Such copy-on-write faults have been exploited by
Suzaki et al. [103] to detected applications on Linux and
Windows as well as file downloads. Recently, Gruss et al. [24]
demonstrated the possibility to measure the timing differences
between normal write accesses and copy-on-write faults from
within JavaScript code. Based on these precise timings they
suggest to fingerprint visited websites by allocating memory
that stores images found on popular websites. If the user
browses the website with the corresponding image, then at
some point the OS detects the identical content in the pages
and deduplicates these pages. By continuously writing to the
allocated memory, the attacker might observe a copy-on-write
fault in which case the attacker knows that the user currently
browses the corresponding website.

Microarchitectural Attacks: Modern computer architectures
include many components to improve the overall effective-
ness and performance. For instance, CPU caches represent an
important component within the memory hierarchy of mod-
ern computer architectures. Multiple cache levels bridge the

3For example, CyanogenMod OS allows to enable page deduplication.



SPREITZER et al.: SYSTEMATIC CLASSIFICATION OF SIDE-CHANNEL ATTACKS: CASE STUDY FOR MOBILE DEVICES 477

gap between the latency of main memory accesses and the
fast CPU clock frequencies. Microarchitectural attacks exploit
specific effects like the timing behavior of these components,
e.g., branch prediction units and CPU caches, in order to
learn sensitive information about executed instructions, code
paths, etc. More specifically, by measuring execution times
and memory accesses, an attacker can infer sensitive informa-
tion from processes running in parallel on the same device. As
CPU caches have been shown to represent a powerful source
of information leaks, we focus on cache attacks.

Attacks: Cache-timing attacks against AES have already
been investigated on Android-based mobile devices. For
instance, Bernstein’s cache-timing attack [104] has been
launched on development boards [105]–[107] and on Android
smartphones [108], [109] in order to reduce the effective
key size of AES. Besides, similar cache attacks have been
launched on embedded devices [110] and more fine-grained
attacks [5] against AES have also been applied on smart-
phones [111]. These attacks relied on privileged access to
precise timing measurements, but as stated by Oren et al. [112]
cache attacks can also be exploited via JavaScript and, thus, do
not require native code execution anymore. They even demon-
strated the possibility to track user behavior including mouse
movements as well as browsed websites via JavaScript-based
cache attacks. A recent paper by Lipp et al. [113] demon-
strates that all existing cache attacks, including the effective
Flush+Reload attack [6], can be applied on modern Android
smartphones without any privileges. While early attacks on
smartphones exclusively targeted cryptographic implementa-
tions, their work also shows that user interactions (touch
actions and swipe actions) can be inferred through this side
channel. Similar investigations of Flush+Reload on ARM have
also been conducted by Zhang et al. [114].

As some of these attacks actively influence the behavior of
the victim, e.g., the execution time, some microarchitectural
attacks can also be considered as active attacks. For a more
detailed survey about microarchitectural attacks in general, we
refer to the survey papers by Ge et al. [7] and Szefer [40].

Sensor-based Keyloggers: Cai et al. [115] and
Raij et al. [116] were one of the first to discuss pri-
vacy implications resulting from mobile devices equipped
with cameras, microphones, GPS sensors, and motion sensors
in general. Nevertheless, a category of attacks that received
significant attention are sensor-based keyloggers. These
attacks are based on two observations. First, smartphones
are equipped with lots of sensors—both motion sensors as
well as ambient sensors—that can be accessed without any
permission, and second, these devices are operated with
fingers while being held in the users’ hands. Hence, the
following attacks are all based on the observation that users
tap/touch/swipe the touchscreen and that the device is slightly
tilt and turned during the operation.

Attacks: In 2011, Cai and Chen [9] were the first to observe
a correlation between entered digits on touchscreens and the
readings from the accelerometer sensor that can be exploited
for motion-based keylogging attacks. Following this work,
Owusu et al. [117] extended the attack to infer single char-
acters, and Aviv [118] and Aviv et al. [10] investigated the

accelerometer to attack PIN and pattern inputs. Subsequent
publications [119]–[121] also considered the combination of
the accelerometer and the gyroscope in order to improve the
performance as well as to infer even longer text inputs [122].

Since the W3C specifications allow access to the motion and
orientation sensors from JavaScript, motion-based keylogging
attacks have even been performed via websites [12], [123].
Even worse, some browsers continue to execute JavaScript,
although the user closed the browser or turned off the screen.

While the above summarized attacks exploit different
motion sensors, e.g., accelerometer and gyroscope, ambi-
ent sensors can also be used for keylogging attacks.
Spreitzer [124] presented an attack that exploits an ambient
sensor, namely the ambient-light sensor, in order to infer a
user’s PIN input on touchscreens. Minor tilts and turns during
keyboard input lead to variations of the ambient-light sensor
readings, which are then correlated with keyboard input on the
touchscreen.

As demonstrated by Simon and Anderson [125], PIN inputs
on smartphones can also be inferred by continuously taking
pictures via the front camera. Afterwards, PIN digits can be
inferred by image analysis and by investigating the relative
changes of objects in subsequent pictures that correlate with
the entered digits. Fiebig et al. [126] demonstrated that the
front camera can be used to capture the screen reflections
in the user’s eyeballs, which allows to infer user input. In
a similar manner, Narain et al. [127] and Gupta et al. [128]
showed that tap sounds (inaudible to the human ear) recorded
via smartphone stereo-microphones can be used to infer typed
text on the touchscreen. However, these attacks require dedi-
cated permissions to access the camera and the microphone,
which might raise the user’s suspicion. In contrast, the motion
and ambient sensors can be accessed without any permission.

For a more complete overview of sensor-based keylogging
attacks, we refer to the survey papers by Hussain et al. [44]
and Nahapetian [45]. Considering the significant number of
papers that have been published in this context, user aware-
ness about such attacks should be raised. Especially since
Mehrnezhad et al. [123] found that the perceived risk of
motion sensors, especially ambient sensors, among users is
very low.

Fingerprinting Devices/Users: The identification of smart-
phones (and users) without a user’s awareness is considered a
privacy risk. While obvious identification mechanisms such as
device IDs and Web cookies can be thwarted, imperfections of
hardware components, e.g., sensors, as well as specific soft-
ware features can also be employed to stealthily fingerprint
and identify devices and users, respectively.

Attacks: Bojinov et al. [129] and Dey et al. [130]
observed that unique variations of sensor readings (e.g., of
the accelerometer) can be used to fingerprint devices. These
variations are a result of the manufacturing process and are
persistent throughout the life of the sensor/device. As these
sensors can be accessed via JavaScript, it is possible to finger-
print devices via websites [131]. Similarly, such imperfections
also affect the microphones and speakers [132], [133], which
also allow to fingerprint devices. In addition, by combining
multiple sensors, even higher accuracies can be achieved [134].



478 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

Kurtz et al. [135] demonstrated how to fingerprint mobile
device configurations, e.g., device names, language set-
tings, installed apps, etc. Hence, their fingerprinting approach
exploits software properties (i.e., software configurations)
only. Hupperich et al. [136] proposed to combine hardware
features as well as software features to fingerprint mobile
devices.

Location Inference: As smartphones are always carried
around, information about a phone’s location inevitably reveals
the user’s location. Hence, resources that obviously can be
used to determine a user’s location, e.g., the GPS sensor,
are considered as privacy relevant and, thus, require a dedi-
cated permission. Yet, even without permissions, side-channel
attacks can be used to infer precise location information about
users.

Attacks: Han et al. [141], Nawaz and Mascolo [142], and
Narain et al. [143] demonstrated that the accelerometer and the
gyroscope can be used to infer car driving routes. Similarly,
Hemminki et al. [144] inferred the transportation mode, e.g.,
train, bus, metro, etc., via the accelerometer readings. Besides
the accelerometer and the gyroscope, ambient sensors can also
be used to infer driving routes. Ho et al. [138] exploited the
correlation between sensor readings of the barometer sensor
and the geographic elevation to infer driving routes.

Even less obvious side-channels that allow to infer driving
routes and locations are the speaker status information (e.g.,
speaker on/off) and the power consumption (available via the
procfs). More specifically, Zhou et al. [14] observed that the
Android API allows to query whether or not the speaker is cur-
rently active, i.e., boolean information that indicates whether
or not any app is playing sound on the speakers. They exploit
this information to attack the turn-by-turn voice guidance of
navigation systems. By continuously querying this API, they
determine how long the speaker is active. This information
allows to infer the speech length of voice direction elements,
e.g., the length of “Turn right onto East Main Street”. As driv-
ing routes consist of many such turn-by-turn voice guidances,
fingerprinting driving routes is possible.

Michalevsky et al. [13] observed that the power consump-
tion (available in the procfs) is related to the strength of the
cellular signal, which depends on the distance to the base
station. Given this information, they inferred a user’s location.

Speech Recognition: Eavesdropping conversations repre-
sents a severe privacy threat. Thus, a dedicated permission
protects the access to the microphone. However, acoustic sig-
nals, such as human speech, in the vicinity of a mobile device
also influence the gyroscope measurements.

Attacks: Michalevsky et al. [137] exploited the gyroscope
sensor to measure acoustic signals in the vicinity of the phone
and to recover speech information. Although they only con-
sider a small set of vocabulary, i.e., digits only, their work
demonstrates the immense power of gyroscope sensors in
today’s smartphones. By exploiting the gyroscope sensor to
eavesdrop on a user’s conversations they are able to bypass
the permission required to access the microphone.

Soundcomber: Customer service departments often rely
on automated menu services to interact with customers
over the phone. A well-known example are the interactive

voice response systems supported by telephone services that
use dual-tone multi-frequency (DTMF) signaling to trans-
mit entered numbers, i.e., an audio signal is transmitted for
each key.

Attacks: As DTMF tones are also played locally,
Schlegel et al. [139] showed that by requesting permission
to access the microphone, these tones can be recorded and
used to infer sensitive input provided to these automated menu
services. More specifically, they exploit this information to
infer credit card numbers entered while interacting with such
interactive voice response systems of credit card companies.

B. Active Attacks

An area of research that gains increasing attention among
the scientific community are active side-channel attacks that
can be exploited via software execution only. The most promi-
nent example is the so-called Rowhammer attack that exploits
DRAM disturbance errors to conduct software-induced fault
attacks.

Rowhammer: The increasing density of memory cells within
the DRAM requires the size of these cells to decrease, which
in turn decreases the charging of single cells but also causes
electromagnetic coupling effects between cells.

Attacks: Kim et al. [145] demonstrated that these observa-
tions can be used to induce hardware faults, i.e., bit flips in
neighboring cells, via frequent memory accesses to the main
memory. Thereby, they showed that frequent memory accesses
in the attacker’s memory allow to induce faults (bit flips) in
the victim’s memory. Seaborn and Dullien [146] demonstrated
how to possibly exploit these bit flips from native code and
Gruss et al. [147] showed that such bit flips can even be
induced via JavaScript code. A recent paper [140] demon-
strates the exploitation of the Rowhammer bug to gain root
privileges on Android smartphones by inducing bit flips from
an unprivileged application.

C. Overview

Table IV summarizes the discussed attack categories and the
targeted information. The target “application/action inference”
also refers to sensitive information that can be inferred from
specific actions. For example, diseases conditions, stock port-
folios, etc. can be inferred from data-usage statistics (see [14]).
The target “user input” refers to PIN and pattern inputs on
the screen, inter-keystroke timing information, and also the
DTMF tone exploitation [139]. Again an attack category not
targeting specific information (yet), which is indicated by an
✗, represents a possible gap that might be closed in future
research.

VII. TREND ANALYSIS

In Figure 7 we classify the attacks surveyed in
Sections IV–VI according to our new classification system.
We distinguish between active and passive attackers along the
(right) y-axis. Passive attacks are classified above the x-axis
and active attacks are classified below the x-axis. The (left)
y-axis distinguishes between the exploitation of physical prop-
erties and logical properties. As both of these categories can



SPREITZER et al.: SYSTEMATIC CLASSIFICATION OF SIDE-CHANNEL ATTACKS: CASE STUDY FOR MOBILE DEVICES 479

TABLE IV
OVERVIEW OF REMOTE SIDE-CHANNEL ATTACKS AND CORRESPONDING TARGETS. ✓ AND ✗ INDICATE WHETHER OR

NOT A SPECIFIC ATTACK HAS BEEN PERFORMED ON THE CORRESPONDING TARGET

Fig. 7. Overview of side-channel attacks: (1) active vs passive, (2) logical properties vs physical properties, (3) local vs vicinity vs remote.

be exploited by passive as well as active attackers, these two
categories are mirrored along the x-axis. The x-axis catego-
rizes side-channel attacks according to the attacker’s proximity
to the targeted device. For instance, some attacks require
an attacker to have access to the targeted device or even
to have access to components within the device, e.g., the
attacker might remove the back cover in order to measure

the EM emanation of the chip. Stronger adversaries (with
weaker assumptions) might rely on wiretapping techniques.
The strongest adversaries rely on unprivileged applications
being executed on the targeted device or even only that the
victim visits a malicious website.

Based on this classification system we observe specific
trends in modern side-channel attacks that will be discussed



480 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

within the following paragraphs. This trend analysis also
includes pointers for possible research directions.

From Local to Remote Attacks: The first trend that can be
observed is that, in contrast to the smart card era, the smart-
phone era faces a shift towards remote side-channel attacks
that focus on both hardware properties and software features.
The shift from local attacks (during the smart card era) towards
remote attacks (on mobile devices) can be addressed to the fact
that the attack scenario as well as the attacker have changed
significantly. More specifically, side-channel attacks against
smart cards have been conducted to reveal sensitive informa-
tion that should be protected from being accessed by benign
users. For example, in case of pay-TV cards the secret keys
must be protected against benign users, i.e., users who bought
these pay-TV cards in the first place. The attacker in this case
might be willing to invest in equipment in order to reveal the
secret key as this key could be sold later on.

In contrast, today’s smartphones are used to store and pro-
cess sensitive information, and attackers interested in this
information are usually not the users themselves but rather
criminals, imposters, and other malicious entities that aim
to steal this sensitive information from users. Especially the
appification of the mobile ecosystem provides tremendous
opportunities for attackers to exploit identified side-channel
leaks via software-only attacks. Hence, this shift also signif-
icantly increases the scale at which attacks are conducted.
While local attacks only target a few devices, remote attacks
can be conducted on millions of devices at the same time by
distributing software via available app markets.

From Active to Passive Attacks: The second trend that can
be observed is that fault injection attacks have been quite pop-
ular on smart cards, whereas such (local) fault attacks are
not that widely investigated on smartphones, at least at the
moment. Consequently, we also observe that the variety of
fault attacks conducted in the smart card era has decreased
significantly in the smartphone era, which can be addressed
to the following observations. First, the targeted device itself,
e.g., a smartphone, is far more expensive than a smart card
and, hence, fault attacks that potentially permanently break
the device are only acceptable for very targeted attacks. Even
in case of highly targeted attacks (see Apple vs FBI dispute),
zero-day vulnerabilities might be chosen instead of local fault
attacks.4 Second, remote fault attacks seem to be harder to
conduct as such faults are harder to induce via software exe-
cution. Currently, the only remote fault attack (also known
as software-induced fault attack) is the Rowhammer attack,
which however gets increasing attention among the scientific
community and has already been exploited to gain root access
on Android devices [140]. Although software-induced fault
attacks have not been investigated extensively in the past, we
expect further research to be conducted in this context.

Some microarchitectural attacks can also be considered as
active attacks because the attacker influences the behavior of
the targeted program (victim). For example, cache attacks can
be used to slow down the execution of the victim due to cache

4However, in September 2016 Skorobogatov [80] demonstrated that NAND
mirroring allows to bypass the PIN entry limit on the iPhone 5c.

contention. However, this does not introduce a fault in the
computation and, hence, Rowhammer currently represents the
only software-induced fault attack.

Exploiting Physical and Logical Properties: In contrast
to physical properties, logical properties (software features)
do not result from any physical interaction with the device,
but due to dedicated features provided via software. While
traditional side-channel attacks mostly exploited physical
properties and required dedicated equipment, more recent
side-channel attacks exploit physical properties as well as
logical properties. Interestingly, the immense number of sen-
sors in smartphones also allows to exploit physical properties
by means of software-only attacks, which was not possible
on smart cards. Although the majority of attacks on mobile
devices still exploits physical properties, the exploitation of
logical properties also receives increasing attention. Especially
the procfs seems to provide an almost inexhaustible source for
possible information leaks. For example, the memory footprint
released via the procfs has been used to infer visited web-
sites [25], or the number of context switches has been used to
infer swipe input [11]. Besides, information that is available
via official APIs is in some cases also available via the procfs
such as the data-usage statistics that have been exploited to
infer a user’s identity [14] and to infer visited websites [26].

Empty Areas: As can be observed, a few areas in this cat-
egorization system (see Figure 7) are not (yet) covered or are
not covered that densely. For instance, there is currently no
active side-channel attack that can be executed remotely and
that exploits logical properties (software features) to induce
faults or to actively influence the targeted program (vic-
tim). However, by considering existing passive attacks, one
could come up with more advanced attacks by introducing an
active attacker. Such an active attacker might, for example,
block/influence a shared resource in order to cause malfunc-
tioning of the target. For instance, considering the passive
attack exploiting the speaker status (on/off) to infer a user’s
driving routes [14], one could easily influence the victim appli-
cation by playing inaudible sounds in the right moment in
order to prevent the turn-by-turn voice guidance from access-
ing the speaker. Thereby, the active attacker prevents the target
(victim) from accessing the shared resource, i.e., the speaker,
and based on this induced behavior an active attacker might
gain an advantage compared to a passive attacker. We expect
advances in this (yet) uncovered area of active side-channel
attacks that target software features.

Tabular Summary of Surveyed Attacks: Table V provides a
tabular summary for the categorization of the surveyed attacks.
For some attacks we observe that active as well as passive
modes of attack have already been considered, e.g., differen-
tial computation analysis and network traffic analysis attacks.
Some attacks can also be conducted by exploiting physical
properties as well as logical properties, e.g., the fingerprinting
of devices and network traffic analysis attacks.

VIII. DISCUSSION OF COUNTERMEASURES

In this section, we discuss existing countermeasures against
the most prominent attacks. Overall we aim to shed light onto



SPREITZER et al.: SYSTEMATIC CLASSIFICATION OF SIDE-CHANNEL ATTACKS: CASE STUDY FOR MOBILE DEVICES 481

TABLE V
SUMMARY OF SURVEYED ATTACKS

possible pitfalls of existing countermeasures and to stimulate
future research to come up with more generic countermeasures
against side-channel attacks.

A. Local Side-Channel Attacks

Protecting Cryptographic Implementations: Cryptographic
implementations represent a prominent target of side-channel
attacks as a successful attack allows to recover sensitive
data and to break mechanisms building upon these prim-
itives. Therefore, countermeasures to protect cryptographic
implementations have already been proposed for the smart
card world. These countermeasures can be applied to protect
cryptographic implementations on smartphones as well. For
example, masking of sensitive values such as the randomiza-
tion of key-dependent values during cryptographic operations,
or execution randomization are countermeasures for harden-
ing the implementation against passive attacks such as power
analysis or EM analysis [4]. Executing critical calculations
twice allows to detect faults that are injected during an active
side-channel attack [148].

Protecting User Input: Mitigation techniques to prevent
attackers from inferring user input on touchscreens by means
of smudge attacks or shoulder surfing attacks are not that
thoroughly investigated yet. Nevertheless, proposed counter-
measures include, for example, randomly starting the vibrator
to prevent attacks that monitor the backside of the device [66],
or to randomize the layout of the soft keyboard each time
the user provides input to prevent smudge attacks [118]
as well as attacks that monitor the hand movement [65].
Aviv [118] also proposed to align PIN digits in the middle
of the screen and after each authentication the user needs to
swipe down across all digits in order to hide smudges. Besides,
Kwon and Na [149] introduced a new authentication mecha-
nism denoted as TinyLock that should prevent smudge attacks

against pattern unlock mechanisms. Krombholz et al. [150]
proposed an authentication mechanism for devices with
pressure-sensitive screens that should prevent smudge attacks
and shoulder surfing attacks. Raguram et al. [62], [63] sug-
gested to decrease the screen brightness, to disable visual
feedback (e.g., pop-up characters) on soft keyboards, and to
use anti-reflective coating in eyeglasses to prevent attackers
from exploiting reflections.

B. Vicinity Side-Channel Attacks

Preventing Network Traffic Analysis: Countermeasures to
prevent attackers from applying traffic analysis techniques on
wiretapped network connections have been extensively consid-
ered in the context of website fingerprinting attacks. The main
idea of these obfuscation techniques is to hide information that
allows attackers to uniquely identify communication partners
or transmitted content such as visited websites. Proposed coun-
termeasures [151]–[155], however, require the application,
e.g., the browser application, as well as the remote server to
cooperate. Furthermore, it has already been pointed out in [26]
that these countermeasures add overhead in terms of band-
width and data consumption which might not be acceptable in
case of mobile devices with limited data plans.

C. Remote Side-Channel Attacks

Permissions: The most straight-forward approach always
discussed as a viable means to prevent specific types of
software-only side-channel attacks is to protect the exploited
information or resource by means of dedicated permissions.
However, there is a study [156] that showed that permission-
based approaches are not quite convincing. Some users do not
understand the exact meaning of specific permissions, and oth-
ers do not care about requested permissions. Acar et al. [15]
even attested that the Android permission system “has failed



482 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

in practice”. Despite these problems it seems to be nearly
impossible to add dedicated permissions for every exploited
information.

Keyboard Layout Randomization: In order to prevent sensor-
based keylogging attacks that exploit the correlation between
user input and the device movements observed via sensor read-
ings, the keyboard layout of soft keyboards could be random-
ized [117]. For instance, the Android-based CyanogenMod
OS allows to enable such a feature for PIN inputs optionally.
However, it remains an open question how this would affect
usability in case of QWERTY keyboards and, intuitively, it
might make keyboard input nearly impossible.

Limiting Access or Sampling Frequency: It has also been
suggested to disable access to sensor readings during sensitive
input or to reduce the sampling frequency of sensors. This,
however, would hinder applications that heavily rely on sensor
readings such as pedometers.

Side-channel attacks like Soundcomber might be prevented
by AuDroid [157], which is an extension to the SELinux
reference monitor that has been integrated into Android to con-
trol access to system audio resources. As pointed out by the
authors, there is no security mechanism in place for the host
OS to control access to mobile device speakers, thus allowing
untrusted apps to exploit this communication channel. AuDroid
enforces security policies that prevent data in system apps and
services from being leaked to (or used by) untrusted parties.

Noise Injection: Randomly starting the phone vibrator has
been suggested by Owusu et al. [117] to prevent sensor-based
keyloggers that exploit the accelerometer sensor. However,
Shrestha et al. [158] showed that random vibrations do not
provide protection. As an alternative, Shrestha et al. proposed
a tool named Slogger that introduces noise into sensor read-
ings as soon as the soft keyboard is running. In order to do so,
Slogger relies on a tool that needs to be started via the ADB
shell (in order to be executed with ADB capabilities). Slogger
injects events into the files corresponding to the accelerometer
and the gyroscope located in /dev/input/, which is why
ADB privileges are required for this defense mechanism. The
authors even evaluated the effectiveness of Slogger against two
sensor-based keyloggers and found that the accuracy of sensor-
based keyloggers can be reduced significantly. Das et al. [131]
also suggested to add noise to sensor readings in order to
prevent device fingerprinting via hardware imperfections of
sensors. A more general approach that targets the injection of
noise into the information provided via the procfs has been
proposed by Xiao et al. [46].

Preventing Microarchitectural Attacks: The inherent nature
of modern computer architectures enables sophisticated attacks
due to shared resources and especially due to dedicated
performance optimization techniques. A famous and popular
example is the memory hierarchy that introduces signifi-
cant performance gains but also enables microarchitectural
attacks such as cache attacks. Although specific cryptographic
implementations can be protected against such attacks, e.g.,
bit-sliced implementations [159], [160] or dedicated hardware
instructions can be used to protect AES implementations,
generic countermeasures against cache attacks represent a
non-trivial challenge. However, we consider it of utmost

importance to spur further research in the context of coun-
termeasures, especially since cache attacks do not only pose a
risk for cryptographic algorithms, but also for other sensitive
information such as keystrokes [23], [113].

App Guardian: Most of the above presented countermea-
sures aim to prevent very specific attacks only, but cannot be
applied to prevent attacks within a specific category of our
classification system, e.g., software-only attacks located in the
upper right of our new classification system (see Figure 7). At
least some of these attacks, however, have been addressed by
App Guardian [16], which represents a more general approach
to defend against software-only attacks. App Guardian is a
third-party application that runs in user mode and employs
side-channel information to detect RIG attacks (including
software-only side-channel attacks). The basic idea of App
Guardian is to stop the malicious application while the princi-
pal (the app to be protected) is being executed and to resume
the (potentially malicious) application later on. Although App
Guardian still faces challenges, it is a novel idea to cope with
such side-channel attacks in general. More specifically, it tries
to cope with all passive attacks that require the attacker to
execute software on the targeted device.

App Guardian seems to be a promising research project
to cope with side-channel attacks on smartphones at a larger
scale. However, an unsolved issue of App Guardian is the
problem that it still struggles with the proper identification
of applications to be protected. Furthermore, App Guardian
relies on side-channel information—to detect ongoing side-
channel attacks—that has been removed in Android 7. Hence,
App Guardian needs to be updated in order to also work on
recent Android versions and its effectiveness should be further
evaluated against existing side-channel attacks. Furthermore,
it might be interesting to extend its current framework to cope
with side-channel attacks conducted from within the browser,
i.e., to mitigate side-channel attacks via JavaScript.

D. Summary

Although local attacks target only a few devices or users, we
also observe that we require a much broader range of coun-
termeasures because also the attack methodologies of local
attacks are much broader. For instance, we have to deal with
attackers that measure the power consumption of the device
in order to break cryptographic implementations, we have to
deal with fault attacks such as clock/power glitching and tem-
perature variations, and at the same time we have to deal with
attackers that exploit smudges left on the touchscreen.

In contrast, the commonality of all remote attacks is
that they require software execution on the targeted device.
Although this means that remote attacks target devices and
users at a much broader scale, more generic countermeasures
such as App Guardian seem to be the most promising approach
to cope with these attacks in the future.

IX. ISSUES, CHALLENGES, AND FUTURE RESEARCH

In this section we discuss open issues and challenges that
need to be addressed in future research. Hence, this sec-
tion is not meant to provide solutions to existing problems.



SPREITZER et al.: SYSTEMATIC CLASSIFICATION OF SIDE-CHANNEL ATTACKS: CASE STUDY FOR MOBILE DEVICES 483

Instead, with the presented classification system for modern
side-channel attacks we aim to shed light onto this vivid
research area and, thereby, to point out high-level research
directions. Overall, the ultimate goal is to spur further research
in the context of side-channel attacks and countermeasures
and, as a result, to pave the way for a more secure computing
platform for smart and mobile devices.

Countermeasures: Side-channel attacks are published at an
unprecedented pace and appropriate defense mechanisms are
often either not (yet) available or cannot be deployed eas-
ily. Especially the five key enablers identified in this paper
enable devastating side-channel attacks that can be conducted
remotely and, thus, target an immense number of devices
and users at the same time. Although countermeasures are
being researched, we observe a cat and mouse game between
attackers and system engineers trying to make systems secure
from a side-channel perspective. Besides, even if effective
countermeasures were readily available, the mobile ecosys-
tem of Android would impede a large-scale deployment of
many of these defense mechanisms. The main problem is that
even in case Google would apply defense mechanisms and
patch these information leaks, multiple device manufacturers
as well as carriers also need to apply these patches to deploy
countermeasures in practice. Hence, chances are that such
countermeasures will never be deployed, especially not in case
of outdated operating systems. We hope to stimulate research
to come up with viable countermeasures in order to prevent
such attacks at a larger scale, i.e., by considering larger areas
within the new categorization system, while also considering
the challenges faced by the mobile ecosystem. For instance,
App Guardian [16] follows the right direction by trying to
cope with attacks at a larger scale, while at the same time it
can be deployed as a third-party application.

Reproducibility and Responsible Disclosure: In order to fos-
ter research in the context of countermeasures, it would be
helpful to publish the corresponding frameworks used to con-
duct side-channel attacks. While this might also address the
long-standing problem of reproducibility of experiments in
computer science in general, this would enable a more effi-
cient evaluation of developed countermeasures. At the same
time, however, responsible disclosure must be upheld, which
sometimes turns out to be a difficult balancing act. On the
one hand, researchers want to publish their findings as soon
as possible and on the other hand, putting countermeasures to
practice might take some time.

Different Mobile Operating Systems and Cross-Platform
Development: Research should not only focus on one partic-
ular OS exclusively, i.e., especially Android seems to attract
the most attention. Instead, the applicability of side-channel
attacks should be investigated on multiple platforms, as many
(or most) of the existing attacks work on other platforms as
well. This is due to the fact that different platforms and devices
from different vendors aim to provide the same features such
as sensors and software interfaces, and rely on similar security
concepts like permission systems and application sandboxing.

In addition, the increasing trend to develop applications
for multiple platforms (cross-platform development) also
increases the possibility to target multiple platforms at the

same time. For example, the increasing popularity of HTML5
apps and the increasing availability of Web APIs to access
native resources from JavaScript significantly increases the
scale of side-channel attacks as specific attacks possibly target
multiple platforms at the same time.

Wearables: Although we put a strong focus on smartphones
in this paper, we stress that wearables in general must be con-
sidered in future research. For example, smartwatches have
already been employed to attack user input on POS terminals
and hardware QWERTY keyboards [161]–[164]. Besides, it
has also been demonstrated that smartwatches can be used to
infer input on smartphones [165], [166] as well as text writ-
ten on whiteboards [167]. With the ever increasing number
of smart devices connected to our everyday lives, the threat
of side-channel attacks increases. We are likely to see higher
accuracies when these attacks are performed across multiple
devices, e.g., when combining data from smartwatches and
smartphones. Furthermore, Farshteindiker et al. [168] also
demonstrated how hardware implants (bugs)—possibly used
by intelligence agencies—can be used to exfiltrate data by
communicating with a smartphone. The communication chan-
nel is based on inaudible sounds emitted from the implant
which are captured by the gyroscope of the smartphone. This
interconnection clearly demonstrates the potential of attacks
when multiple wearable devices are combined.

Internet of Things: Another area of research which is rapidly
growing is the Internet of Things (IoT). As all devices in
the IoT network are inter-connected and accessible via the
Internet, we foresee that attackers will exploit side-channel
leaks to target different kinds of IoT appliances. In fact such an
attack has already been carried out by Zhang et al. [16]. They
investigated an Android-based Wi-Fi camera and observed that
a particular side-channel leak on Android can be exploited to
infer whether or not the user is at home. This example demon-
strates that side-channel leaks do not only pose a threat to
a user’s privacy and security from a system security point
of view, but also pose a threat to smart home appliances
and security systems, such as smart thermostats, cameras,
and alarm systems. Although this sounds utopian at first, the
above example clearly demonstrates that side-channel leaks
(on smartphones) also pose a threat to these IoT appliances
and puts even users’ physical possessions at risk.

Combination of Multiple Information Leaks: In order to
improve the accuracy of existing attacks or to come up
with more sophisticated attack scenarios, multiple side-channel
leaks can also be combined. For instance, the combination
of cache attacks and sensor-based keyloggers as mentioned
in [113] could be used to improve keylogging attacks. First,
cache attacks can be used to determine the exact time when
a key is entered and, second, sensor-based keyloggers can be
used to infer the actual key. Furthermore, website fingerprint-
ing attacks could be combined with sensor-based keyloggers as
mentioned in [26], which would allow to steal login credentials
for specific websites.

In addition, side-channel attacks can also be used to improve
attacks that exploit software vulnerabilities. For example,
although Screenmilker [47] does not represent a side-channel
attack—because a software vulnerability is exploited—it relies



484 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

on side-channel information in order to exploit this vulnera-
bility in the right moment. Lin et al. [47] suggested to rely on
CPU utilization, memory consumption, and network activities
in order to determine whether the targeted app is executed and,
thus, were able to take screenshots in the right moment.

Code Analysis Tools: The appification of mobile devices
enables an easy installation of apps from the app markets.
However, these apps can be implemented by anyone who has a
developer account and, thus, the code needs to be checked and
verified appropriately, i.e., for presence of malicious behav-
ior and side channels. While the app vetting processes of
app stores, e.g., Google Play, already check for presence of
malicious behavior, dedicated technologies, such as static and
dynamic code analysis, should also be employed in order to
prevent apps prone to side-channel attacks and apps exploiting
side-channel information leaks from being distributed via app
markets. This, however, does not seem to be a trivial task since
most side-channel attacks exploit information or resources that
can be accessed without any specific privileges or permissions.

Static and dynamic code analysis tools could also help to
fix implementation flaws that lead to side-channel attacks.
Some implementation flaws exist for many years without being
noticed as has been demonstrated in [169] for the OpenSSL
implementation of the digital signature algorithm. Fostering
the development and application of tools to find and detect
such flaws during the software development process could help
to prevent vulnerable code from being deployed.

A possible starting point for the investigation and extension
of code analysis tools that might allow to scan applications
for possible side-channel attacks would be one of the survey
papers discussed in Section II-C.

X. CONCLUSION

Considering the immense threat arising from side-channel
attacks on mobile devices, a thorough understanding of infor-
mation leaks and possible exploitation techniques is necessary.
Based on this open issue, we surveyed existing side-channel
attacks and identified commonalities between these attacks in
order to systematically categorize all existing attacks. With
the presented classification system we aim to provide a thor-
ough understanding of information leaks and hope to spur
further research in the context of side-channel attacks as well
as countermeasures and, thereby, to pave the way for secure
computing platforms.

ACKNOWLEDGMENT

The authors would like to thank Florian Mendel for help-
ful discussions about active side-channel attacks as well as
Cristofaro Mune and Nikita Abdullin for pointing out a
missing attack category.

REFERENCES

[1] P. C. Kocher, “Timing attacks on implementations of Diffie–Hellman,
RSA, DSS, and other systems,” in Advances in Cryptology—
CRYPTO 1996 (LNCS 1109). Heidelberg, Germany: Springer, 1996,
pp. 104–113.

[2] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology—CRYPTO 1999 (LNCS 1666). Heidelberg,
Germany: Springer, 1999, pp. 388–397.

[3] J.-J. Quisquater and D. Samyde, “Electromagnetic analysis (EMA):
Measures and counter-measures for smart cards,” in Smart Card
Programming and Security—E-Smart 2001 (LNCS 2140). Heidelberg,
Germany: Springer, 2001, pp. 200–210.

[4] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks—
Revealing the Secrets of Smart Cards. New York, NY, USA: Springer,
2007.

[5] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on
AES, and countermeasures,” J. Cryptol., vol. 23, no. 1, pp. 37–71,
2010.

[6] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack,” in Proc. USENIX Security Symp.,
San Diego, CA, USA, 2014, pp. 719–732.

[7] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware,”
J. Cryptograph. Eng., pp. 1–27, 2016.

[8] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“DRAMA: Exploiting DRAM addressing for cross-CPU attacks,” in
Proc. USENIX Security Symp., 2016, pp. 565–581.

[9] L. Cai and H. Chen, “TouchLogger: Inferring keystrokes on touch
screen from smartphone motion,” in Proc. USENIX Workshop Hot
Topics Security (HotSec), San Francisco, CA, USA, 2011. [Online].
Available: https://www.usenix.org/conference/hotsec11/touchlogger-
inferring-keystrokes-touch-screen-smartphone-motion

[10] A. J. Aviv, B. Sapp, M. Blaze, and J. M. Smith, “Practicality of
accelerometer side channels on smartphones,” in Proc. Annu. Comput.
Security Appl. Conf. (ACSAC), Orlando, FL, USA, 2012, pp. 41–50.

[11] L. Simon, W. Xu, and R. Anderson, “Don’t interrupt me while I type:
Inferring text entered through gesture typing on Android keyboards,”
Proc. Privacy Enhancing Technol., vol. 2016, no. 3, pp. 136–154, 2016.

[12] M. Mehrnezhad, E. Toreini, S. F. Shahandashti, and F. Hao,
“TouchSignatures: Identification of user touch actions and PINs based
on mobile sensor data via JavaScript,” J. Inf. Security Appl., vol. 26,
pp. 23–38, Feb. 2016.

[13] Y. Michalevsky, A. Schulman, G. A. Veerapandian, D. Boneh, and
G. Nakibly, “PowerSpy: Location tracking using mobile device power
analysis,” in Proc. USENIX Security Symp., 2015, pp. 785–800.

[14] X. Zhou et al., “Identity, location, disease and more: Inferring your
secrets from Android public resources,” in Proc. Conf. Comput.
Commun. Security (CCS), Berlin, Germany, 2013, pp. 1017–1028.

[15] Y. Acar et al., “SoK: Lessons learned from Android security research
for appified software platforms,” in Proc. IEEE Symp. Security Privacy
(S P), San Jose, CA, USA, 2016, pp. 433–451.

[16] N. Zhang, K. Yuan, M. Naveed, X. Zhou, and X. Wang, “Leave me
alone: App-level protection against runtime information gathering on
Android,” in Proc. IEEE Symp. Security Privacy (S P), San Jose, CA,
USA, 2015, pp. 915–930.

[17] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp)iPhone:
Decoding vibrations from nearby keyboards using mobile phone
accelerometers,” in Proc. Conf. Comput. Commun. Security (CCS),
Chicago, IL, USA, 2011, pp. 551–562.

[18] T. Zhu, Q. Ma, S. Zhang, and Y. Liu, “Context-free attacks using key-
board acoustic emanations,” in Proc. Conf. Comput. Commun. Security
(CCS), Scottsdale, AZ, USA, 2014, pp. 453–464.

[19] S. Biedermann, S. Katzenbeisser, and J. Szefer, “Hard drive
side-channel attacks using smartphone magnetic field sensors,”
in Financial Cryptography—FC 2015 (LNCS 8975). Heidelberg,
Germany: Springer, 2015, pp. 489–496.

[20] L. Schwittmann, V. Matkovic, M. Wander, and T. Weis, “Video recogni-
tion using ambient light sensors,” in Proc. Pervasive Comput. Commun.
Workshops (PerCom), Sydney, NSW, Australia, 2016, pp. 1–9.

[21] C. Song et al., “My smartphone knows what you print: Exploring
smartphone-based side-channel attacks against 3D printers,” in Proc.
Conf. Comput. Commun. Security (CCS), Vienna, Austria, 2016,
pp. 895–907.

[22] A. Hojjati et al., “Leave your phone at the door: Side channels that
reveal factory floor secrets,” in Proc. Conf. Comput. Commun. Security
(CCS), Vienna, Austria, 2016, pp. 883–894.

[23] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches,” in Proc. USENIX
Security Symp., Washington, DC, USA, 2015, pp. 897–912.

[24] D. Gruss, D. Bidner, and S. Mangard, “Practical memory deduplication
attacks in sandboxed JavaScript,” in Proc. Eur. Symp. Res. Comput.
Security (ESORICS), vol. 9326. Vienna, Austria, 2015, pp. 108–122.



SPREITZER et al.: SYSTEMATIC CLASSIFICATION OF SIDE-CHANNEL ATTACKS: CASE STUDY FOR MOBILE DEVICES 485

[25] S. Jana and V. Shmatikov, “Memento: Learning secrets from process
footprints,” in Proc. IEEE Symp. Security Privacy (S P), San Francisco,
CA, USA, 2012, pp. 143–157.

[26] R. Spreitzer, S. Griesmayr, T. Korak, and S. Mangard, “Exploiting data-
usage statistics for website fingerprinting attacks on Android,” in Proc.
Security Privacy Wireless Mobile Netw. (WISEC), Darmstadt, Germany,
2016, pp. 49–60.

[27] Global Market Share Held by the Leading Smartphone Operating
Systems in Sales to End Users From 1st Quarter 2009 to 1st
Quarter 2017, Gartner, Stamford, CT, USA, accessed: Jun. 13, 2017.
[Online]. Available: https://www.statista.com/statistics/266136/global-
market-share-held-by-smartphone-operating-systems/

[28] A. D. Luzio, A. Mei, and J. Stefa, “Mind your probes:
De-anonymization of large crowds through smartphone WiFi probe
requests,” in Proc. IEEE INFOCOM, San Francisco, CA, USA, 2016,
pp. 1–9.

[29] R. Spolaor, L. Abudahi, V. Moonsamy, M. Conti, and R. Poovendran,
“No free charge theorem: A covert channel via USB charging cable
on mobile devices,” in Applied Cryptography and Network Security—
ACNS 2017. Cham, Switzerland: Springer, 2017.

[30] W. Enck, “Defending users against smartphone apps: Techniques and
future directions,” in Information Systems Security—ICISS (LNCS
7093). Heidelberg, Germany: Springer, 2011, pp. 49–70.

[31] M. L. Polla, F. Martinelli, and D. Sgandurra, “A survey on security
for mobile devices,” IEEE Commun. Surveys Tuts., vol. 15, no. 1,
pp. 446–471, 1st Quart., 2013.

[32] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and A. Ribagorda,
“Evolution, detection and analysis of malware for smart devices,” IEEE
Commun. Surveys Tuts., vol. 16, no. 2, pp. 961–987, 2nd Quart., 2014.

[33] P. Faruki et al., “Android security: A survey of issues, malware pen-
etration, and defenses,” IEEE Commun. Surveys Tuts., vol. 17, no. 2,
pp. 998–1022, 2nd Quart., 2015.

[34] B. Rashidi and C. J. Fung, “A survey of Android security threats and
defenses,” J. Wireless Mobile Netw. Ubiquitous Comput. Depend. Appl.,
vol. 6, no. 3, pp. 3–35, 2015.

[35] A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek, “A taxonomy and
qualitative comparison of program analysis techniques for security
assessment of Android software,” IEEE Trans. Softw. Eng., vol. 43,
no. 6, pp. 492–530, Jun. 2017.

[36] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The
evolution of Android malware and Android analysis techniques,” ACM
Comput. Surveys, vol. 49, no. 4, pp. 1–41, 2017.

[37] M. Tunstall, Smart Card Security. Cham, Switzerland: Springer Int.,
2017, pp. 217–251.

[38] S. Zander, G. J. Armitage, and P. Branch, “A survey of covert channels
and countermeasures in computer network protocols,” IEEE Commun.
Surveys Tuts., vol. 9, no. 3, pp. 44–57, 3rd Quart., 2007.

[39] A. K. Biswas, D. Ghosal, and S. Nagaraja, “A survey of timing chan-
nels and countermeasures,” ACM Comput. Surveys, vol. 50, no. 1,
pp. 1–39, 2017.

[40] J. Szefer, “Survey of microarchitectural side and covert channels,
attacks, and defenses,” IACR Cryptology ePrint Archive, Report
2016/479, 2016. [Online]. Available: https://eprint.iacr.org/2016/479

[41] J. Ullrich, T. Zseby, J. Fabini, and E. R. Weippl, “Network-based secret
communication in clouds: A survey,” IEEE Commun. Surveys Tuts.,
vol. 19, no. 2, pp. 1112–1144, 2nd Quart., 2017.

[42] J. Betz, D. Westhoff, and G. Müller, “Survey on covert channels in
virtual machines and cloud computing,” Trans. Emerg. Telecommun.
Technol., vol. 28, no. 6, 2017, Art. no. e3134.

[43] M. Xu et al., “Toward engineering a secure Android ecosystem: A
survey of existing techniques,” ACM Comput. Surveys, vol. 49, no. 2,
pp. 1–47, 2016.

[44] M. Hussain et al., “The rise of keyloggers on smartphones: A survey
and insight into motion-based tap inference attacks,” Pervasive Mobile
Comput., vol. 25, pp. 1–25, Jan. 2016.

[45] A. Nahapetian, “Side-channel attacks on mobile and wearable systems,”
in Proc. Consum. Commun. Netw. Conf. (CCNC), Las Vegas, NV, USA,
2016, pp. 243–247.

[46] Q. Xiao, M. K. Reiter, and Y. Zhang, “Mitigating storage side channels
using statistical privacy mechanisms,” in Proc. Conf. Comput. Commun.
Security (CCS), Denver, CO, USA, 2015, pp. 1582–1594.

[47] C. Lin, H. Li, X. Zhou, and X. Wang, “Screenmilker: How to milk
your Android screen for secrets,” in Proc. Netw. Distrib. Syst. Security
Symp. (NDSS), 2014, doi: 10.14722/ndss.2014.23049.

[48] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Investigations of
power analysis attacks on smartcards,” in Proc. Workshop Smartcard
Technol. (Smartcard), 1999, p. 17.

[49] L. Yan, Y. Guo, X. Chen, and H. Mei, “A study on power side chan-
nels on mobile devices,” in Proc. Symp. Internetware (Internetware),
Wuhan, China, 2015, pp. 30–38.

[50] C. H. Gebotys, S. Ho, and C. C. Tiu, “EM analysis of Rijndael and
ECC on a wireless Java-based PDA,” in Cryptographic Hardware
and Embedded Systems—CHES (LNCS 3659). Heidelberg, Germany:
Springer, 2005, pp. 250–264.

[51] Y. Nakano et al., “A pre-processing composition for secret key recov-
ery on Android smartphone,” in Information Security Theory and
Practice—WISTP 2014 (LNCS 8501). Heidelberg, Germany: Springer,
2014, pp. 76–91.

[52] G. Goller and G. Sigl, “Side channel attacks on smartphones and
embedded devices using standard radio equipment,” in Constructive
Side-Channel Analysis and Secure Design—COSADE 2015 (LNCS
9064). Cham, Switzerland: Springer, 2015, pp. 255–270.

[53] P. Belgarric, P. Fouque, G. Macario-Rat, and M. Tibouchi, “Side-
channel analysis of weierstrass and Koblitz curve ECDSA on Android
smartphones,” in Topics in Cryptology—CT-RSA 2016 (LNCS 9610).
Cham, Switzerland: Springer, 2016, pp. 236–252.

[54] D. Genkin, L. Pachmanov, I. Pipman, E. Tromer, and Y. Yarom,
“ECDSA key extraction from mobile devices via nonintrusive phys-
ical side channels,” in Proc. Conf. Comput. Commun. Security (CCS),
Vienna, Austria, 2016, pp. 1626–1638.

[55] J. W. Bos, C. Hubain, W. Michiels, and P. Teuwen, “Differential com-
putation analysis: Hiding your white-box designs is not enough,” in
Cryptographic Hardware and Embedded Systems—CHES 2016 (LNCS
9813). Heidelberg, Germany: Springer, 2016, pp. 215–236.

[56] A. J. Aviv, K. L. Gibson, E. Mossop, M. Blaze, and J. M. Smith,
“Smudge attacks on smartphone touch screens,” in Proc. Workshop
Offensive Technol. (WOOT), Washington, DC, USA, 2010. [Online].
Available: https://www.usenix.org/conference/woot10/smudge-attacks-
smartphone-touch-screens

[57] Y. Zhang et al., “Fingerprint attack against touch-enabled devices,”
in Proc. Security Privacy Smartphones Mobile Devices SPSM@CCS,
Raleigh, NC, USA, 2012, pp. 57–68.

[58] P. Andriotis, T. Tryfonas, G. C. Oikonomou, and C. Yildiz, “A pilot
study on the security of pattern screen-lock methods and soft side chan-
nel attacks,” in Proc. Security Privacy Wireless Mobile Netw. (WISEC),
Budapest, Hungary, 2013, pp. 1–6.

[59] M. Backes, M. Dürmuth, and D. Unruh, “Compromising reflections-
or-how to read LCD monitors around the corner,” in Proc. IEEE Symp.
Security Privacy (S P), Oakland, CA, USA, 2008, pp. 158–169.

[60] M. Backes, T. Chen, M. Dürmuth, H. P. A. Lensch, and M. Welk,
“Tempest in a teapot: Compromising reflections revisited,” in Proc.
IEEE Symp. Security Privacy (S P), Berkeley, CA, USA, 2009,
pp. 315–327.

[61] F. Maggi, S. Gasparini, and G. Boracchi, “A fast eavesdropping attack
against touchscreens,” in Proc. Inf. Assurance Security (IAS), 2011,
pp. 320–325.

[62] R. Raguram, A. M. White, D. Goswami, F. Monrose, and J.-M. Frahm,
“iSpy: Automatic reconstruction of typed input from compromising
reflections,” in Proc. Conf. Comput. Commun. Security (CCS), Chicago,
IL, USA, 2011, pp. 527–536.

[63] R. Raguram et al., “On the privacy risks of virtual keyboards:
Automatic reconstruction of typed input from compromising reflec-
tions,” IEEE Trans. Depend. Secure Comput., vol. 10, no. 3,
pp. 154–167, May/Jun. 2013.

[64] Y. Xu, J. Heinly, A. M. White, F. Monrose, and J.-M. Frahm, “Seeing
double: Reconstructing obscured typed input from repeated compro-
mising reflections,” in Proc. Conf. Comput. Commun. Security (CCS),
Berlin, Germany, 2013, pp. 1063–1074.

[65] D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha, “Beware, your
hands reveal your secrets!” in Proc. Conf. Comput. Commun. Security
(CCS), Scottsdale, AZ, USA, 2014, pp. 904–917.

[66] J. Sun et al., “VISIBLE: Video-assisted keystroke inference from tablet
backside motion,” in Proc. Netw. Distrib. Syst. Security Symp. (NDSS),
San Diego, CA, USA, 2016, doi: 10.14722/ndss.2016.23.

[67] Q. Yue et al., “Blind recognition of touched keys on mobile devices,” in
Proc. Conf. Comput. Commun. Security (CCS), Scottsdale, AZ, USA,
2014, pp. 1403–1414.

[68] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance
of checking cryptographic protocols for faults (extended abstract),”
in Advances in Cryptology—EUROCRYPT 1997 (LNCS 1233).
Heidelberg, Germany: Springer, 1997, pp. 37–51.

[69] E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in Advances in Cryptology—CRYPTO 1997 (LNCS
1294). Heidelberg, Germany: Springer, 1997, pp. 513–525.

http://dx.doi.org/10.14722/ndss.2014.23049
http://dx.doi.org/10.14722/ndss.2016.23


486 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

[70] Fault Injection Raspberry PI, NewAE Technol. Inc., Halifax,
NS, Canada, accessed: Aug. 3, 2016. [Online]. Available:
https://wiki.newae.com

[71] C. O’Flynn, “Fault injection using crowbars on embedded systems,”
IACR Cryptology ePrint Archive, Report 2016/810, 2016. [Online].
Available: https://eprint.iacr.org/2016/810

[72] S. Ordas, L. Guillaume-Sage, and P. Maurine, “Electromagnetic fault
injection: The curse of flip-flops,” J. Cryptograph. Eng., vol. 7, no. 3,
pp. 183–197, 2017.

[73] L. Rivière et al., “High precision fault injections on the instruction
cache of ARMv7-M architectures,” in Proc. Hardw. Orient. Security
Trust (HOST), Washington, DC, USA, 2015, pp. 62–67.

[74] E. Sanfelix, C. Mune, and J. de Haas, “Unboxing the white-box:
Practical attacks against obfuscated ciphers,” Blackhat, 2015. [Online].
Available: https://www.blackhat.com/docs/eu-15/materials/eu-15-
Sanfelix-Unboxing-The-White-Box-Practical-Attacks-Against-
Obfuscated-Ciphers-wp.pdf

[75] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction
attacks,” in Cryptographic Hardware and Embedded Systems—CHES
2002 (LNCS 2523). Heidelberg, Germany: Springer, 2002, pp. 2–12.

[76] J. G. J. van Woudenberg, M. F. Witteman, and F. Menarini,
“Practical optical fault injection on secure microcontrollers,” in Proc.
Fault Diagnosis Tolerance Cryptograp. (FDTC), Nara, Japan, 2011,
pp. 91–99.

[77] C. Roscian, A. Sarafianos, J. Dutertre, and A. Tria, “Fault model anal-
ysis of laser-induced faults in SRAM memory cells,” in Proc. Fault
Diagnosis Tolerance Cryptograph. (FDTC), Santa Barbara, CA, USA,
2013, pp. 89–98.

[78] M. Hutter and J.-M. Schmidt, “The temperature side channel and
heating fault attacks,” in Smart Card Research and Advanced
Applications—CARDIS 2013 (LNCS 8419). Cham, Switzerland:
Springer, 2013, pp. 219–235.

[79] T. Müller and M. Spreitzenbarth, “FROST—Forensic recovery
of scrambled telephones,” in Applied Cryptography and Network
Security—ACNS 2013 (LNCS 7954). Berlin, Germany: Springer, 2013,
pp. 373–388.

[80] S. Skorobogatov, “The bumpy road towards iPhone 5c NAND mir-
roring,” arXiv ePrint Archive, Report 1609.04327, 2016. [Online].
Available: https://arxiv.org/abs/1609.04327

[81] G. He, M. Yang, X. Gu, J. Luo, and Y. Ma, “A novel active web-
site fingerprinting attack against Tor anonymous system,” in Proc.
Comput. Supported Cooperative Work Design (CSCWD), Hsinchu,
Taiwan, 2014, pp. 112–117.

[82] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from
a distance: Website fingerprinting attacks and defenses,” in Proc.
Conf. Comput. Commun. Security (CCS), Raleigh, NC, USA, 2012,
pp. 605–616.

[83] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website fin-
gerprinting in onion routing based anonymization networks,” in Proc.
Workshop Privacy Electron. Soc. (WPES), Chicago, IL, USA, 2011,
pp. 103–114.

[84] T. Wang and I. Goldberg, “Improved website fingerprinting on Tor,”
in Proc. Workshop Privacy Electron. Soc. (WPES), Berlin, Germany,
2013, pp. 201–212.

[85] M. Juárez, S. Afroz, G. Acar, C. Díaz, and R. Greenstadt, “A critical
evaluation of website fingerprinting attacks,” in Proc. Conf. Comput.
Commun. Security (CCS), Scottsdale, AZ, USA, 2014, pp. 263–274.

[86] A. Panchenko et al., “Website fingerprinting at Internet scale,” in Proc.
Netw. Distrib. Syst. Security Symp. (NDSS), San Diego, CA, USA,
2016, doi: 10.14722/ndss.2016.23477.

[87] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde, “Analyzing
Android encrypted network traffic to identify user actions,” IEEE Trans.
Inf. Forensics Security, vol. 11, no. 1, pp. 114–125, Jan. 2016.

[88] T. Stöber, M. Frank, J. B. Schmitt, and I. Martinovic, “Who do you
sync you are?: Smartphone fingerprinting via application behaviour,”
in Proc. Security Privacy Wireless Mobile Netw. (WISEC), Budapest,
Hungary, 2013, pp. 7–12.

[89] Q. Yang, P. Gasti, G. Zhou, A. Farajidavar, and K. S. Balagani, “On
inferring browsing activity on smartphones via USB power analysis
side-channel,” IEEE Trans. Inf. Forensics Security, vol. 12, no. 5,
pp. 1056–1066, May 2017.

[90] M. Conti, M. Nati, E. Rotundo, and R. Spolaor, “Mind the
plug! Laptop-user recognition through power consumption,” in Proc.
Workshop IoT Privacy Trust Security (IoTPTS@AsiaCCS), Xi’an,
China, 2016, pp. 37–44.

[91] J. Zhang et al., “Privacy leakage in mobile sensing: Your unlock pass-
words can be leaked through wireless hotspot functionality,” Mobile
Inf. Syst., vol. 2016, pp. 1–14, Mar. 2016.

[92] M. Li et al., “When CSI meets public WiFi: Inferring your mobile
phone password via WiFi signals,” in Proc. Conf. Comput. Commun.
Security (CCS), Vienna, Austria, 2016, pp. 1068–1079.

[93] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song,
“NetworkProfiler: Towards automatic fingerprinting of Android apps,”
in Proc. IEEE INFOCOM, Turin, Italy, 2013, pp. 809–817.

[94] Q. Wang, A. Yahyavi, B. Kemme, and W. He, “I know what you did
on your smartphone: Inferring app usage over encrypted data traffic,”
in Proc. IEEE Commun. Netw. Security (CNS), Florence, Italy, 2015,
pp. 433–441.

[95] S. Miskovic, G. M. Lee, Y. Liao, and M. Baldi, “AppPrint: Automatic
fingerprinting of mobile applications in network traffic,” in Passive and
Active Measurement—PAM 2015 (LNCS 8995). Cham, Switzerland:
Springer, 2015, pp. 57–69.

[96] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “AppScanner:
Automatic fingerprinting of smartphone apps from encrypted network
traffic,” in Proc. IEEE Eur. Symp. Security Privacy (EURO S P),
Saarbrücken, Germany, 2016, pp. 439–454.

[97] H. F. Alan and J. Kaur, “Can Android applications be identified using
only TCP/IP headers of their launch time traffic?” in Proc. Security
Privacy Wireless Mobile Netw. (WISEC), Darmstadt, Germany, 2016,
pp. 61–66.

[98] B. Saltaformaggio et al., “Eavesdropping on fine-grained user activ-
ities within smartphone apps over encrypted network traffic,” in
Proc. Workshop Offensive Technol. (WOOT), Austin, TX, USA, 2016,
pp. 69–78.

[99] M. Schulz, P. Klapper, M. Hollick, E. Tews, and S. Katzenbeisser,
“Trust the wire, they always told me!: On practical non-destructive
wire-tap attacks against Ethernet,” in Proc. Security Privacy Wireless
Mobile Netw. (WISEC), Darmstadt, Germany, 2016, pp. 43–48.

[100] K. Ali, A. X. Liu, W. Wang, and M. Shahzad, “Keystroke recogni-
tion using WiFi signals,” in Proc. Mobile Comput. Netw. (MOBICOM),
Paris, France, 2015, pp. 90–102.

[101] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking into your app
without actually seeing it: UI state inference and novel Android
attacks,” in Proc. USENIX Security Symp., San Diego, CA, USA, 2014,
pp. 1037–1052.

[102] W. Diao, X. Liu, Z. Li, and K. Zhang, “No pardon for the interruption:
New inference attacks on Android through interrupt timing analysis,”
in Proc. IEEE Symp. Security Privacy (S P), San Jose, CA, USA, 2016,
pp. 414–432.

[103] K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Memory deduplication
as a threat to the guest OS,” in Proc. Eur. Workshop Syst. Security
(EUROSEC), Salzburg, Austria, 2011, p. 1.

[104] D. J. Bernstein. (2004). Cache-Timing Attacks on AES. [Online].
Available: http://cr.yp.to/papers.html#cachetiming

[105] M. Weiß, B. Heinz, and F. Stumpf, “A cache timing attack on
AES in virtualization environments,” in Financial Cryptography—
FC 2012 (LNCS 7397). Heidelberg, Germany: Springer, 2012,
pp. 314–328.

[106] M. Weiß, B. Weggenmann, M. August, and G. Sigl, “On cache tim-
ing attacks considering multi-core aspects in virtualized embedded
systems,” in Proc. Conf. Trusted Syst. (INTRUST), vol. 9473. Beijing,
China, 2014, pp. 151–167.

[107] A. Zankl, K. Miller, J. Heyszl, and G. Sigl, “Towards efficient eval-
uation of a time-driven cache attack on modern processors,” in Proc.
Eur. Symp. Res. Comput. Security (ESORICS), vol. 9879. Heraklion,
Greece, 2016, pp. 3–19.

[108] R. Spreitzer and T. Plos, “On the applicability of time-driven
cache attacks on mobile devices,” in Network and System Security—
NSS 2013 (LNCS 7873). Heidelberg, Germany: Springer, 2013,
pp. 656–662.

[109] R. Spreitzer and B. Gérard, “Towards more practical time-driven
cache attacks,” in Information Security Theory and Practice—
WISTP 2014 (LNCS 8501). Heidelberg, Germany: Springer, 2014,
pp. 24–39.

[110] A. Bogdanov, T. Eisenbarth, C. Paar, and M. Wienecke, “Differential
cache-collision timing attacks on AES with applications to embed-
ded CPUs,” in Topics in Cryptology—CT-RSA 2010 (LNCS 5985).
Heidelberg, Germany: Springer, 2010, pp. 235–251.

[111] R. Spreitzer and T. Plos, “Cache-access pattern attack on dis-
aligned AES T-tables,” in Constructive Side-Channel Analysis and
Secure Design—COSADE 2013 (LNCS 7864). Heidelberg, Germany:
Springer, 2013, pp. 200–214.

http://dx.doi.org/10.14722/ndss.2016.23477


SPREITZER et al.: SYSTEMATIC CLASSIFICATION OF SIDE-CHANNEL ATTACKS: CASE STUDY FOR MOBILE DEVICES 487

[112] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The spy in the sandbox: Practical cache attacks in JavaScript and
their implications,” in Proc. Conf. Comput. Commun. Security (CCS),
Denver, CO, USA, 2015, pp. 1406–1418.

[113] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,
“ARMageddon: Cache attacks on mobile devices,” in Proc. USENIX
Security Symp., 2016, pp. 549–564.

[114] X. Zhang, Y. Xiao, and Y. Zhang, “Return-oriented flush-reload side
channels on ARM and their implications for Android devices,” in
Proc. Conf. Comput. Commun. Security (CCS), Vienna, Austria, 2016,
pp. 858–870.

[115] L. Cai, S. Machiraju, and H. Chen, “Defending against sensor-sniffing
attacks on mobile phones,” in Proc. Workshop Netw. Syst. Appl. Mobile
Handhelds (MobiHeld), Barcelona, Spain, 2009, pp. 31–36.

[116] A. Raij, A. Ghosh, S. Kumar, and M. B. Srivastava, “Privacy risks
emerging from the adoption of innocuous wearable sensors in the
mobile environment,” in Proc. Conf. Human Factors Comput. Syst.
(CHI), Vancouver, BC, Canada, 2011, pp. 11–20.

[117] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “ACCessory:
Password inference using accelerometers on smartphones,” in Proc.
Mobile Comput. Syst. Appl. (HotMobile), San Diego, CA, USA, 2012,
p. 9.

[118] A. J. Aviv, “Side channels enable by smartphone interaction,” Ph.D.
dissertation, Dept. Comput. Inf. Sci., Univ. Pennsylvania, Philadelphia,
PA, USA, 2012.

[119] Z. Xu, K. Bai, and S. Zhu, “TapLogger: Inferring user inputs on smart-
phone touchscreens using on-board motion sensors,” in Proc. Security
Privacy Wireless Mobile Netw. (WISEC), Tucson, AZ, USA, 2012,
pp. 113–124.

[120] L. Cai and H. Chen, “On the practicality of motion based
keystroke inference attack,” in Trust and Trustworthy Computing—
TRUST 2012 (LNCS 7344). Heidelberg, Germany: Springer, 2012,
pp. 273–290.

[121] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R. Choudhury,
“Tapprints: Your finger taps have fingerprints,” in Proc. Mobile Syst.
(MobiSys), 2012, pp. 323–336.

[122] D. Ping, X. Sun, and B. Mao, “TextLogger: Inferring longer
inputs on touch screen using motion sensors,” in Proc. Security
Privacy Wireless Mobile Netw. (WISEC), New York, NY, USA, 2015,
pp. 1–12.

[123] M. Mehrnezhad, E. Toreini, S. F. Shahandashti, and F. Hao, “Stealing
PINs via mobile sensors: Actual risk versus user perception,”
arXiv ePrint Archive, Report 1605.05549, 2016. [Online]. Available:
https://arxiv.org/abs/1605.05549

[124] R. Spreitzer, “PIN skimming: Exploiting the ambient-light sensor
in mobile devices,” in Proc. Security Privacy Smartphones Mobile
Devices (SPSM@CCS), Scottsdale, AZ, USA, 2014, pp. 51–62.

[125] L. Simon and R. Anderson, “PIN skimmer: Inferring PINs through
the camera and microphone,” in Proc. Security Privacy Smartphones
Mobile Devices (SPSM@CCS), Berlin, Germany, 2013, pp. 67–78.

[126] T. Fiebig, J. Krissler, and R. Hänsch, “Security impact of high res-
olution smartphone cameras,” in Proc. Workshop Offensive Technol.
(WOOT), San Diego, CA, USA, 2014, p. 15.

[127] S. Narain, A. Sanatinia, and G. Noubir, “Single-stroke language-
agnostic keylogging using stereo-microphones and domain specific
machine learning,” in Proc. Security Privacy Wireless Mobile Netw.
(WISEC), Oxford, U.K., 2014, pp. 201–212.

[128] H. Gupta, S. Sural, V. Atluri, and J. Vaidya, “Deciphering text
from touchscreen key taps,” in Data and Applications Security and
Privacy—DBSec 2016 (LNCS 9766). Cham, Switzerland: Springer,
2016, pp. 3–18.

[129] H. Bojinov, Y. Michalevsky, G. Nakibly, and D. Boneh, “Mobile device
identification via sensor fingerprinting,” arXiv ePrint Archive, Report
1408.1416, 2014. [Online]. Available: https://arxiv.org/abs/1408.1416

[130] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi,
“AccelPrint: Imperfections of accelerometers make smartphones track-
able,” in Proc. Netw. Distrib. Syst. Security Symp. (NDSS), San Diego,
CA, USA, 2014, doi: 10.14722/ndss.2014.23059.

[131] A. Das, N. Borisov, and M. Caesar, “Tracking mobile Web users
through motion sensors: Attacks and defenses,” in Proc. Netw.
Distrib. Syst. Security Symp. (NDSS), San Diego, CA, USA, 2016,
doi: 10.14722/ndss.2016.23390.

[132] A. Das, N. Borisov, and M. Caesar, “Do you hear what I hear?:
Fingerprinting smart devices through embedded acoustic components,”
in Proc. Conf. Comput. Commun. Security (CCS), Scottsdale, AZ, USA,
2014, pp. 441–452.

[133] Z. Zhou, W. Diao, X. Liu, and K. Zhang, “Acoustic fingerprinting
revisited: Generate stable device ID stealthily with inaudible sound,”
in Proc. Conf. Comput. Commun. Security (CCS), Scottsdale, AZ, USA,
2014, pp. 429–440.

[134] T. Hupperich, H. Hosseini, and T. Holz, “Leveraging sensor finger-
printing for mobile device authentication,” in Detection of Intrusions
and Malware & Vulnerability Assessment—DIMVA 2016 (LNCS 9721).
Cham, Switzerland: Springer, 2016, pp. 377–396.

[135] A. Kurtz, H. Gascon, T. Becker, K. Rieck, and F. C. Freiling,
“Fingerprinting mobile devices using personalized configurations,”
Proc. Privacy Enhancing Technol., vol. 2016, no. 1, pp. 4–19,
2016.

[136] T. Hupperich, D. Maiorca, M. Kührer, T. Holz, and G. Giacinto,
“On the robustness of mobile device fingerprinting: Can mobile
users escape modern Web-tracking mechanisms?” in Proc. Annu.
Comput. Security Appl. Conf. (ACSAC), Los Angeles, CA, USA, 2015,
pp. 191–200.

[137] Y. Michalevsky, D. Boneh, and G. Nakibly, “Gyrophone: Recognizing
speech from gyroscope signals,” in Proc. USENIX Security Symp.,
San Diego, CA, USA, 2014, pp. 1053–1067.

[138] B.-J. Ho, P. D. Martin, P. Swaminathan, and M. B. Srivastava, “From
pressure to path: Barometer-based vehicle tracking,” in Proc. Embedded
Syst. Energy Efficient Built Environ. (BuildSys), Seoul, South Korea,
2015, pp. 65–74.

[139] R. Schlegel et al., “Soundcomber: A stealthy and context-aware sound
trojan for smartphones,” in Proc. Netw. Distrib. Syst. Security Symp.
(NDSS), San Diego, CA, USA, 2011, pp. 17–33.

[140] V. van der Veen et al., “Drammer: Deterministic rowhammer attacks on
mobile platforms,” in Proc. Conf. Comput. Commun. Security (CCS),
Vienna, Austria, 2016, pp. 1675–1689.

[141] J. Han, E. Owusu, L. T. Nguyen, A. Perrig, and J. Zhang,
“ACComplice: Location inference using accelerometers on smart-
phones,” in Proc. Int. Conf. Commun. Syst. Netw. (COMSNETS),
Bengaluru, India, 2012, pp. 1–9.

[142] S. Nawaz and C. Mascolo, “Mining users’ significant driving routes
with low-power sensors,” in Proc. Conf. Embedded Netw. Sensor Syst.
(SenSys), Memphis, TN, USA, 2014, pp. 236–250.

[143] S. Narain, T. D. Vo-Huu, K. Block, and G. Noubir, “Inferring user
routes and locations using zero-permission mobile sensors,” in Proc.
IEEE Symp. Security Privacy (S P), San Jose, CA, USA, 2016,
pp. 397–413.

[144] S. Hemminki, P. Nurmi, and S. Tarkoma, “Accelerometer-based trans-
portation mode detection on smartphones,” in Proc. Conf. Embedded
Netw. Sensor Syst. (SenSys), Rome, Italy, 2013, pp. 1–14.

[145] Y. Kim et al., “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” in Proc.
Int. Symp. Comput. Archit. (ISCA), Minneapolis, MN, USA, 2014,
pp. 361–372.

[146] M. Seaborn and T. Dullien, “Exploiting the DRAM rowham-
mer bug to gain kernel privileges,” Blackhat, 2015. [Online].
Available: https://www.blackhat.com/docs/us-15/materials/us-15-
Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-
Privileges.pdf

[147] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote
software-induced fault attack in JavaScript,” in Detection of Intrusions
and Malware & Vulnerability Assessment—DIMVA (LNCS 9721).
Cham, Switzerland: Springer, 2016, pp. 300–321.

[148] V. Lomné, T. Roche, and A. Thillard, “On the need of randomness
in fault attack countermeasures—Application to AES,” in Proc. Fault
Diagnosis Tolerance Cryptograph. (FDTC), Leuven, Belgium, 2012,
pp. 85–94.

[149] T. Kwon and S. Na, “TinyLock: Affordable defense against smudge
attacks on smartphone pattern lock systems,” Comput. Security, vol. 42,
pp. 137–150, May 2014.

[150] K. Krombholz, T. Hupperich, and T. Holz, “Use the force:
Evaluating force-sensitive authentication for mobile devices,” in Proc.
Symp. Usable Privacy Security (SOUPS), Denver, CO, USA, 2016,
pp. 207–219.

[151] C. V. Wright, S. E. Coull, and F. Monrose, “Traffic morphing: An effi-
cient defense against statistical traffic analysis,” in Proc. Netw. Distrib.
Syst. Security Symp. (NDSS), 2009, pp. 237–250.

[152] X. Luo et al., “HTTPOS: Sealing information leaks with browser-
side obfuscation of encrypted flows,” in Proc. Netw. Distrib. Syst.
Security Symp. (NDSS), San Diego, CA, USA, 2011. [Online].
Available: https://www.ndss-symposium.org/ndss2011/httpos-sealing-
information-leaks-with-browser-side-obfuscation-of-encrypted-flows/

http://dx.doi.org/10.14722/ndss.2014.23059
http://dx.doi.org/10.14722/ndss.2016.23390


488 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 20, NO. 1, FIRST QUARTER 2018

[153] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo,
I still see you: Why efficient traffic analysis countermeasures fail,” in
Proc. IEEE Symp. Security Privacy (S P), San Francisco, CA, USA,
2012, pp. 332–346.

[154] X. Cai, R. Nithyanand, and R. Johnson, “CS-BuFLO: A congestion
sensitive website fingerprinting defense,” in Proc. Workshop Privacy
Electron. Soc. (WPES), 2014, pp. 121–130.

[155] R. Nithyanand, X. Cai, and R. Johnson, “Glove: A bespoke web-
site fingerprinting defense,” in Proc. Workshop Privacy Electron. Soc.
(WPES), Scottsdale, AZ, USA, 2014, pp. 131–134.

[156] A. P. Felt et al., “Android permissions: User attention, comprehen-
sion, and behavior,” in Proc. Symp. Usable Privacy Security (SOUPS),
Washington, DC, USA, 2012, p. 3.

[157] G. Petracca, Y. Sun, T. Jaeger, and A. Atamli, “AuDroid: Preventing
attacks on audio channels in mobile devices,” in Proc. Annu.
Comput. Security Appl. Conf. (ACSAC), Los Angeles, CA, USA, 2015,
pp. 181–190.

[158] P. Shrestha, M. Mohamed, and N. Saxena, “Slogger: Smashing motion-
based touchstroke logging with transparent system noise,” in Proc.
Security Privacy Wireless Mobile Netw. (WISEC), Darmstadt, Germany,
2016, pp. 67–77.

[159] R. Könighofer, “A fast and cache-timing resistant implementation
of the AES,” in Topics in Cryptology—CT-RSA 2008 (LNCS 4964).
Heidelberg, Germany: Springer, 2008, pp. 187–202.

[160] C. Rebeiro, A. D. Selvakumar, and A. S. L. Devi, “Bitslice imple-
mentation of AES,” in Cryptology and Network Security—CANS 2006
(LNCS 4301). Heidelberg, Germany: Springer, 2006, pp. 203–212.

[161] H. Wang, T. T.-T. Lai, and R. R. Choudhury, “MoLe: Motion
leaks through smartwatch sensors,” in Proc. Mobile Comput. Netw.
(MOBICOM), Paris, France, 2015, pp. 155–166.

[162] X. Liu, Z. Zhou, W. Diao, Z. Li, and K. Zhang, “When good becomes
evil: Keystroke inference with smartwatch,” in Proc. Conf. Comput.
Commun. Security (CCS), Denver, CO, USA, 2015, pp. 1273–1285.

[163] A. Maiti, O. Armbruster, M. Jadliwala, and J. He, “Smartwatch-based
keystroke inference attacks and context-aware protection mechanisms,”
in Proc. Asia Conf. Comput. Commun. Security (AsiaCCS), Xi’an,
China, 2016, pp. 795–806.

[164] C. Wang, X. Guo, Y. Wang, Y. Chen, and B. Liu, “Friend or foe?:
Your wearable devices reveal your personal PIN,” in Proc. Asia Conf.
Comput. Commun. Security (AsiaCCS), 2016, pp. 189–200.

[165] A. Sarkisyan, R. Debbiny, and A. Nahapetian, “WristSnoop:
Smartphone PINs prediction using smartwatch motion sensors,” in
Proc. IEEE Workshop Inf. Forensics Security (WIFS), Rome, Italy,
2015, pp. 1–6.

[166] A. Maiti, M. Jadliwala, J. He, and I. Bilogrevic, “(Smart)watch your
taps: Side-channel keystroke inference attacks using smartwatches,”
in Proc. Int. Symp. Wearable Comput. (ISWC), Osaka, Japan, 2015,
pp. 27–30.

[167] L. Ardüser, P. Bissig, P. Brandes, and R. Wattenhofer, “Recognizing
text using motion data from a smartwatch,” in Proc. IEEE Pervasive
Comput. Commun. Workshops (PerCom), Sydney, NSW, Australia,
2016, pp. 1–6.

[168] B. Farshteindiker, N. Hasidim, A. Grosz, and Y. Oren, “How to phone
home with someone else’s phone: Information exfiltration using inten-
tional sound noise on gyroscopic sensors,” in Proc. Workshop Offensive
Technol. (WOOT), Austin, TX, USA, 2016, pp. 59–68.

[169] C. P. García, B. B. Brumley, and Y. Yarom, “‘Make sure DSA sign-
ing exponentiations really are constant-time,”’ in Proc. Conf. Comput.
Commun. Security (CCS), Vienna, Austria, 2016, pp. 1639–1650.

Raphael Spreitzer received the master’s degree
(with Distinction) in software engineering and man-
agement and the Ph.D. degree (with Distinction)
in computer science from the Graz University of
Technology in 2017, where he is a Researcher.
His main research interests are information secu-
rity with a special focus on side-channel attacks
on mobile devices, e.g., cache attacks and sensor-
based attacks, and practical applications of privacy-
enhancing technologies.

Veelasha Moonsamy received the Ph.D. degree
from Deakin University, Melbourne, Australia, under
the supervision of Prof. Lynn Batten. She is a
Post-Doctoral Researcher with the Digital Security
Group, Radboud University, The Netherlands. Her
research interests revolves around security and pri-
vacy on mobile devices, in particular side- and
covert-channel attacks, malware detection, and mit-
igation of information leaks at application and
hardware level.

Thomas Korak received the M.Sc. (Dipl.-
Ing.) degree in computer engineering and the
Ph.D. degree from the Graz University of
Technology in 2011 and 2015, respectively, where
he was a Post-Doctoral Researcher with the
Institute for Applied Information Processing and
Communications until 2017. His main research
topics are side-channel attacks, fault attacks
targeting embedded devices, and countermeasures
for hardening devices against this kind of attacks.

Stefan Mangard was a Leading Security Architect
with Infineon Technologies, Munich. He has been
a Full Professor with the Graz University of
Technology since 2013. In this role, he was respon-
sible for defining the security concepts for all
the smart card platforms of Infineon, one of the
largest manufacturers of smart card ICs world-
wide. He is the Chair of the steering committee of
CHES, which is the foremost conference on cryp-
tographic hardware, and an Associate Editor of the
Journal of Cryptographic Engineering. He regularly

serves on program committees of conferences in the field, such as CHES,
CARDIS, and COSADE. He was a recipient of the Highly Prestigious
ERC Consolidator Grant by the European Research Council for his research
proposal “SOPHIA—Securing Software against Physical Attacks” in 2015.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


